ROBERTO DE CARVALHO JÚNIOR

INTERFACES PREDIAIS

Hidráulica, gás, segurança contra incêndio, elétrica, telefonia, sanitários acessíveis, NBR 15575 e BIM – nova forma de projetar

Blucher

PROF. ENG. ROBERTO DE CARVALHO JÚNIOR

INTERFACES PREDIAIS

Hidráulica, gás, segurança contra incêndio, elétrica, telefonia, sanitários acessíveis, NBR 15575: Edificações habitacionais – desempenho e BIM – nova forma de projetar

3ª edição revista e ampliada

Interfaces Prediais: hidráulica, gás, segurança contra incêndio, elétrica, telefonia, sanitários acessíveis, NBR 15575: Edificações habitacionais - desempenho e BIM - nova forma de projetar, 3ª ed.

© 2023 Roberto de Carvalho Júnior Editora Edgard Blücher Ltda.

Publisher Edgard Blücher
Editor Eduardo Blücher
Coordenação editorial Jonatas Eliakim
Diagramação Thaís Pereira
Capa Laércio Flenic
Imagem da capa iStockphoto

Blucher

Rua Pedroso Alvarenga, 1245, 4º andar 04531-934 - São Paulo - SP - Brasil

Tel.: 55 11 3078-5366 contato@blucher.com.br www.blucher.com.br

Segundo o Novo Acordo Ortográfico, conforme 5. ed. do *Vocabulário Ortográfico da Língua Portuguesa*, Academia Brasileira de Letras, março de 2009.

É proibida a reprodução total ou parcial por quaisquer meios sem autorização escrita da editora.

Dados Internacionais de Catalogação na Publicação (CIP) Angélica Ilacqua CRB-8/7057

Carvalho Júnior, Roberto de

Interfaces Prediais: hidráulica, gás, segurança contra incêndio, elétrica, telefonia, sanitários acessíveis, NBR 15575: edificações habitacionais - desempenho e BIM - nova forma de projetar/Roberto de Carvalho Júnior. - 3ª ed. - São Paulo: Blucher, 2023.

308 p.

Bibliografia

ISBN 978-65-5506-410-0

1. Edifícios, estruturas, etc. - Projeto arquitetônico 2. Instalações hidráulicas e sanitárias 3. Instalações elétricas 4. Sistemas telefônicos 5. Prevenção de incêndios I. Título

22-5002 CDD 690

Todos os direitos reservados pela Editora Edgard Blücher Ltda.

Índices para catálogo sistemático:

1. Edifícios, estruturas, etc. - Projeto arquitetônico

CONTEÚDO

1.	INTERFACES DOS SISTEMAS HIDRÁULICOS E SANITÁRIOS	19
	1.1 Considerações gerais	19
	1.2 Interfaces do ramal predial com o projeto arquitetônico	20
	1.3 Concepção de sistemas de medição individualizada	23
	1.3.1. Interfaces com a arquitetura	24
	1.4 Sistemas de abastecimento de água e o projeto de arquitetura	27
	1.4.1 Sistema de distribuição direto	27
	1.4.2 Sistema de distribuição indireto	28
	1.4.3 Sistema de distribuição misto	31
	1.5 Aparelhos sanitários e o projeto de arquitetura	32
	1.5.1 Instalações em banheiros	35
	1.5.2 Instalações em cozinhas	44
	1.5.3 Instalações em áreas de serviço	46
	1.6 Os reservatórios no projeto arquitetônico	48
	1.6.1 Sistema elevatório (casa de bombas)	51
	1.6.2 Capacidade dos reservatórios	53
	1.6.3 Tipos de reservatório	56

	1.7 Fressoes minimas e maximas e suas interfaces com a arquitetura	20
	1.7.1 Instalação de dispositivos controladores de pressão	62
	1.8 Ruídos e vibrações em instalações prediais	66
	1.9 Sistemas de aquecimento de água e tipos de aquecedores	69
	1.9.1 Aquecedores elétricos	69
	1.9.2 Aquecedores a gás	70
	1.9.3 Aquecedor solar	73
	1.10 Interfaces das instalações com os elementos estruturais	77
	1.10.1 Instalações embutidas e aparentes	77
	1.10.2 Vigas sob o perímetro da alvenaria em áreas molhadas	79
	1.10.3 Tubulações que atravessam vigas	80
	1.10.4 Áreas destinadas aos dutos de passagem e inspeção (<i>shafts</i>)	81
	1.10.5 Compartimentos rebatidos eM parede hidráulica	84
	1.11 Reutilização de águas cinzas em projetos residenciais	88
	1.12 Sistema de drenagem pluvial e o projeto de arquitetura	91
	1.12.1 Calhas e rufos nas edificações	93
	1.12.2 Declividade das calhas	95
	1.12.3 Condutores verticais	96
	1.12.4 Vazão concentrada em telhados	97
	1.12.5 Interfaces dos condutores horizontais com os níveis do terreno	98
	1.12.6 Sistema de reutilização de águas pluviais	L00
2.	INTERFACES DAS INSTALAÇÕES DE GÁS	105
	2.1 Considerações gerais	105
	2.1.1 Gás LP	105
	2.1.2 Gás natural	L06
	2.2 Normas específicas para instalações de gás	106
	2.3 Fornecimento do gás LP	L08

Conteúdo 13

	2.4 Tipos de instalações	109
	2.4.1 Instalações residenciais	110
	2.4.2 Instalação em condomínios	112
	2.4.3 Gás canalizado	113
	2.5 Central de gás LP	116
	2.6 Fornecimento do gás natural (gás canalizado)	118
	2.7 Requisitos gerais para elaboração e execução	
	de projetos de instalação a gás	119
3.	INTERFACES DOS SISTEMAS PREDIAIS	
DE	COMBATE A INCÊNDIO	121
	3.1 Considerações gerais	121
	3.2 Características da edificação e área de risco	124
	3.3 Projeto Técnico (PT)	125
	3.4 Projeto Técnico Simplificado (PTS)	126
	3.4.1 Certificado de Licença do Corpo de Bombeiros (CLCB)	127
	3.5 Projeto Técnico de Ocupação e Instalação Temporária (PTIOT)	128
	3.6 Projeto Técnico de Ocupação Temporária	
	em Edificação Permanente (PTOTEP)	129
	3.7 Classificação dos incêndios	129
	3.8 Medidas de segurança contra incêndio	130
	3.8.1 Medidas ativas de proteção	131
	3.8.2 Medidas passivas de proteção	147
4.	INTERFACES DOS SISTEMAS ELÉTRICOS PREDIAIS	161
	4.1 Considerações gerais	161
	4.2 Padrão de entrada	162
	4.3 Localização do quadro de medição de energia	164
	4.4 Localização do quadro de distribuição de energia	166
	4.5 Prumadas elétricas e caixas de passagem	171

	4.6 Previsão de pontos em instalações residenciais	174
	4.6.1 Sala	174
	4.6.2 Escritório	175
	4.6.3 Dormitório	175
	4.6.4 Terraço	176
	4.6.5 Banheiros	176
	4.6.6 Cozinha	178
	4.6.7 Área de serviço	179
	4.6.8 Pontos externos	180
	4.7 Previsão de tomadas no projeto de arquitetura	180
	4.7.1 Tomadas de uso geral (TUG)	180
	4.7.2 Tomadas de uso específico (TUE)	184
	4.8 Interfaces da iluminação com o projeto de arquitetura	184
	4.8.1 Iluminação residencial	185
	4.8.2 Iluminação comercial e administrativa	187
	4.8.3 Iluminação industrial	187
	4.8.4 Aparelhos de iluminação	187
	4.8.5 Tipos de luminárias segundo o modo de aplicação da luz	188
	4.8.6 Tipos de lâmpadas	189
	4.8.7 Cálculo de iluminação	196
	4.9 Componentes utilizados nas instalações elétricas	199
	4.9.1 Dispositivos de proteção para baixa tensão	199
	4.9.2 Eletrodutos	202
	4.9.3 Caixas	206
	4.9.4 Condutores de eletricidade	210
	4.9.5 Dispositivos de manobra	213
5.	INTERFACES DOS SISTEMAS PREDIAIS DE TELEFONIA	217
	5.1 Considerações gerais	217
	5.2 Interfaces de entrada de telefonia e internet	218
	5.2.1 Poste particular para entrada telefônica	220

Conteúdo 15

	5.2.2 Caixa externa para entrada telefônica	222
	5.2.3 Ramal de entrada telefônica	223
	5.3 Prumada telefônica	225
	5.4 Caixas de distribuição	230
	5.5 Caixas de saída	233
	5.6 Tomadas de telefonia	235
	5.7 Critério para previsão de pontos telefônicos	235
	5.8 Critério para previsão de caixas de saída	236
	5.8.1 Residências ou apartamentos	236
	5.8.2 Lojas	236
	5.8.3 Escritórios	236
6.	INTERFACES DE SANITÁRIOS ACESSÍVEIS	237
	6.1 Considerações gerais	237
	6.2 Sanitários	239
	6.2.1 Instalação de aparelhos	240
	6.2.2 Instalação de acessórios	248
7.	INTERFACES DOS SISTEMAS PREDIAIS COM	
ΑN	IORMA DE DESEMPENHO (NBR 15575)	251
	7.1 A norma de desempenho	251
	7.2 Incumbências dos intervenientes	253
	7.3 Avaliação de desempenho	253
	7.4 Vida útil de projeto	254
	7.5 Norma de desempenho em instalações hidrossanitárias	257
	7.5.1 Segurança estrutural	257
	7.5.2 Estanqueidade	260
	7.5.3 Desempenho acústico	261
	7.5.4 Durabilidade e manutenibilidade	261
	7.5.5 Saúde, higiene e qualidade do ar	263

	7.5.6 Funcionalidade e acessibilidade	265
	7.5.7 Conforto tátil e antropodinâmico	265
	7.5.8 Adequação ambiental	266
	7.6 Norma de desempenho em instalações de gás	266
	7.7 Norma de desempenho em instalações de	
	segurança contra incêndio	268
	7.8 Norma de desempenho em instalações elétricas	271
	7.8.1 Segurança no uso e operação	271
	7.9 Norma de desempenho em instalações de telefonia	272
0	DINA NOVA FORMA DE DROJETAD	272
8.	BIM – NOVA FORMA DE PROJETAR	273
	8.1 A evolução da representação gráfica	273
	8.1.1 Uma breve história do projeto e sua representação	273
	8.1.2 Uso de maquetes	274
	8.1.3 Uso do papel "era prancheta"	275
	8.1.4 Uso do computador "era CAD"	277
	8.1.5 Uso do computador "era BIM"	278
	8.2 A modelagem BIM (usos e benefícios)	279
	8.2.1 Elemento parAmÉtrico	279
	8.2.2 Construindo o modelo	281
	8.2.3 Anotações automáticas	282
	8.2.4 Cortes e elevações automática	282
	8.2.5 Detectando interferências entre subsistemas	283
	8.2.6 Visão sistêmica	284
	8.2.7 Integração entre modelos	285
	8.2.8 Antecipação de possíveis problemas	287
	8.2.9 Extração de documentação facilitada	287
	8.2.10 Quantitativos extraidos do modelo	288
	8.2.11 Análise por regras – validação de códigos e normas	290

Conteúdo 17

8.2.12 Simulações do comportamento e do desempenho	
dos edifícios	290
8.2.13 Simulação de construção atrelada ao cronograma	291
8.2.14 Análise de construtibilidade	291
8.2.15 Manual de uso operações e garantia do imóvel	292
8.2.16 Viabilização do uso de novas tecnologias	294
8.3 O BIM não é só modelagem	294
8.3.1 Pilar – processos	295
8.3.2 Pilar – pessoas	295
8.3.3 Pilar – tecnologia	296
8.3.4 Laje – informação e comunicação	296
8.3.5 Fundação – gestão	296
8.4 Um convite ao BIM	296
FERÊNCIAS	299
	dos edifícios 8.2.13 Simulação de construção atrelada ao cronograma 8.2.14 Análise de construtibilidade 8.2.15 Manual de uso operações e garantia do imóvel 8.2.16 Viabilização do uso de novas tecnologias 8.3 O BIM não é só modelagem 8.3.1 Pilar — processos 8.3.2 Pilar — pessoas 8.3.3 Pilar — tecnologia 8.3.4 Laje — informação e comunicação 8.3.5 Fundação — gestão

CAPÍTULO 1

Interfaces dos sistemas hidráulicos e sanitários

1.1 CONSIDERAÇÕES GERAIS

As instalações prediais hidráulico-sanitárias têm como finalidade fazer a distribuição de água em quantidade suficiente e sob pressão adequada a todas as peças de utilização e aparelhos sanitários da edificação, promover a coleta e o afastamento adequados das águas pluviais e das águas servidas e impedir o retorno de águas poluídas nas canalizações de alimentação dos aparelhos, bem como a entrada de gases de esgotos, roedores ou insetos nos edifícios, criando, dessa maneira, condições favoráveis ao conforto e à segurança dos usuários.

O projeto hidráulico é indispensável ao bem construir, pois evita inúmeros erros na montagem das instalações. Quando o assunto é hidráulica, além de um bom projeto, é necessário o emprego de materiais de qualidade comprovada, pois os reparos no sistema de canalizações sempre apresentam custos elevados.

Para se ter uma ideia da negligência com relação ao projeto e à execução das instalações hidráulico-sanitárias, estima-se que a maior incidência de patologias dos edificios é decorrente de problemas relacionados às instalações hidráulicas prediais, e a maior parte dessas falhas tem origem no projeto.

Por outro lado, um projeto arquitetônico elaborado com os equipamentos adequadamente localizados, tendo em vista suas características funcionais, compatibilizado com os projetos de estrutura, instalações e outros pertinentes, é condição básica para a perfeita integração entre os vários subsistemas construtivos. O projeto hidrossanitário harmoniosamente integrado aos demais projetos do edifício permitirá fácil operação e manutenção das instalações. Essa compatibilização entre os vários subsistemas envolvidos na construção do edifício resultará em um correto andamento de obra, evitando improvisações.

A quantidade e a complexidade dos equipamentos utilizados em instalações prediais vêm crescendo muito nos últimos anos. Nas instalações de água e esgoto, por exemplo, é possível listar uma série de itens que até pouco tempo não faziam parte do escopo básico dos edifícios residenciais, como estações de tratamento, sistemas de medição individualizada de água, aparelhos de aquecimento solar, equipamentos de reúso de águas pluviais, entre outros.

O grande desafio para os projetistas de instalações é organizar tudo isso em um espaço físico restrito e cada vez mais limitado pelo projeto arquitetônico e ainda garantir condições de operação e manutenção das instalações.

Os avanços conceituais e tecnológicos que vem ocorrendo na área das instalações prediais hidráulicas e sanitárias visam, sobretudo à qualidade total nas várias etapas que envolvem a implantação desses sistemas.

Dessa maneira, a adequação dos avanços observada nesse segmento está diretamente relacionada ao nível de atendimento das reais necessidades dos usuários. Cabe ao arquiteto planejar e prever essas necessidades.

A instalação e operacionalização desses novos conceitos, exigem do arquiteto a adoção de sistemas construtivos e a previsão de espaços adequados na concepção do projeto de arquitetura.

1.2 INTERFACES DO RAMAL PREDIAL COM O PROJETO ARQUITETÔNICO

Uma instalação predial de água fria pode ser alimentada de duas maneiras: pela rede pública de abastecimento ou por um sistema privado, quando a primeira não estiver disponível.

Quando a instalação for alimentada pela rede pública, a entrada de água no prédio será feita por meio do ramal predial, executado pela concessionária pública responsável pelo abastecimento, que interliga a rede pública de distribuição de água à instalação predial.

De maneira geral, todo sistema público que fornece água exige a colocação de um medidor de consumo, chamado hidrômetro. Esse dispositivo é instalado em um compartimento de alvenaria ou concreto, junto com um registro de gaveta, e a canalização ali existente é chamada de cavalete. Mas, frente à necessidade do uso racional da água

muitas concessionárias tem adotado a utilização de caixas para proteção do cavalete de entrada de água. O abrigo para cavaletes de água é um produto industrializado, confeccionado em chapas de aço galvanizado e pintura eletrostática ou de policarbonato, destinado à proteção do hidrômetro e suas conexões nas entradas de água das residências, empresas, indústrias, condomínios e edifícios que possuem redes de distribuição de água. O produto possibilita melhor controle do consumo de água por parte das operadoras de água, do uso do hidrômetro, inibe fraudes e impede o vandalismo. O abrigo para cavaletes de água deve atender às normativas da concessionaria de água local.

Os equipamentos de medição de água e energia elétrica serão instalados pelas concessionárias, em local previamente preparado, dentro da propriedade particular, preferencialmente no limite do terreno com a via pública, em parede externa da própria edificação, em muros divisórios, e servirá para medir o consumo de água e energia elétrica da edificação.

A localização do compartimento que abriga o cavalete e do quadro de medição de energia elétrica vai depender basicamente do posicionamento dos ramais de entrada de água e de energia.

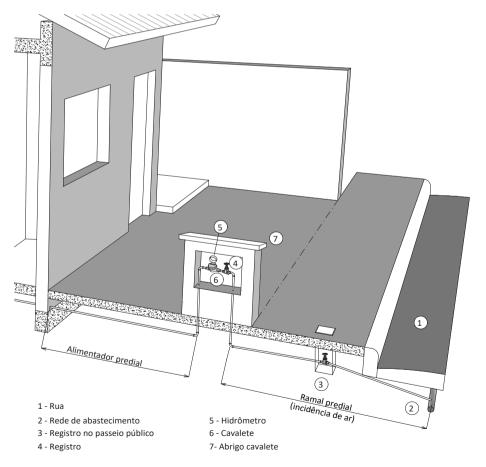


Figura 1.1 Detalhe da entrada de água fria.

Damel weedigt	Hidr	ômetro	Couplete	Ab.:: /dim	
Ramal predial diâmetro D (mm)	Consumo provável (m³/dia)	Vazão característica (m³/hora)	Cavalete diâmetro D (mm)	Abrigo/dimensões: altura, largura e profundidade (m)	
25	5	3	25	0,85 x 0,65 x 0,30	
25	8	5	25	0,85 x 0,65 x 0,30	
25	16	10	32	0,85 x 0,65 x 0,30	
25	30	20	40	0,85 x 0,65 x 0,30	
32	50	30	50	2,00 x 0,90 x 0,40	

Tabela 1.1 Dimensões do abrigo para o cavalete

Antes de iniciar o projeto, o arquiteto deve efetuar um estudo do terreno e da posteação da rua para definir a melhor localização do conjunto: hidrômetro, medidor de energia elétrica, caixa de correspondência, campainha com interfone e câmera de TV.

A entrada de água e de energia deve sempre ser composta de acordo com a ideia usada para o poste, de modo que se consiga uma coerência de padrões. Assim, se o poste foi embutido numa estrutura de alvenaria, o mesmo deve acontecer com a caixa de medição (centro de medição). Dessa maneira, facilita-se a medição do hidrômetro e do relógio de medição. Até para facilitar a medição do hidrômetro e do relógio de medição, as três peças (entrada de água, energia e poste) devem formar um só elemento no projeto arquitetônico.

Assim, vale ressaltar que o compartimento deve ter os painéis de leitura voltados para o lado do passeio público, para que possam ser lidos, mesmo que a casa esteja fechada ou sem morador.

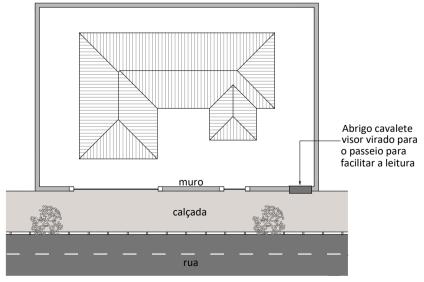


Figura 1.2 Localização do compartimento que abriga o cavalete.

1.3 CONCEPÇÃO DE SISTEMAS DE MEDIÇÃO INDIVIDUALIZADA

Independentemente de sua obrigatoriedade, a medição de água por meio de um único hidrômetro, em edifícios multifamiliares, há muito tempo vem sendo gradativamente substituída pela medição de água individualizada que constitui sinônimo de economia de água e justiça social (o consumidor paga efetivamente pelo seu consumo).

Esse tipo de medição sempre despertou o interesse de muitos arquitetos e projetistas, bem como dos administradores de condomínios e concessionárias (empresas) de abastecimento de água para combater a inadimplência.

A medição individual da água em condomínios prediais é importante por várias razões, dentre as quais se destacam: redução do desperdício de água e, consequentemente, do volume efluente de esgotos; economia de energia elétrica, em razão da redução do volume bombeado para o reservatório superior; e identificação de vazamentos de difícil percepção.

Em nível nacional, foi aprovada uma lei em julho de 2016, a Lei Federal 13.312, que determina que o uso de medidores individuais de água seja obrigatório em todos os imóveis entregues a partir de 2021.

O sistema consiste na instalação de um hidrômetro no ramal de alimentação de cada unidade habitacional, de modo que seja medido todo o seu consumo, com a finalidade de racionalizar o uso da água e fazer a cobrança proporcional ao volume consumido.

Dessa forma, em edifícios multifamiliares, não teremos mais várias colunas alimentando um apartamento, mas somente uma coluna alimentando vários apartamentos, com medição de água individualizada.

O sistema consiste na instalação de um hidrômetro no ramal de alimentação de cada unidade habitacional, de modo que seja medido todo o seu consumo, com a finalidade de racionalizar o seu uso e fazer a cobrança proporcional ao volume consumido.

A medição individual pode ser concentrada em um único local ou distribuída ao longo do edifício. Na medição concentrada, os medidores são posicionados próximos uns dos outros. Os locais mais indicados são na mesma área do barrilete ou, então agrupados no térreo ou subsolo do edifício. Isso facilita a instalação, manutenção e leitura dos medidores. Na medição distribuída os medidores são posicionados em todos os pavimentos do edifício, o mais próximo possível dos apartamentos.

A locação dos medidores nos halls de cada um dos pavimentos do edifício é a mais utilizada pelos projetistas, pois uma única coluna de distribuição derivada do barrilete pode alimentar todos os aparelhos de medição.

No sistema de medição de água individualizada (SMI), o ramal de distribuição principal (RDP) corresponde à tubulação derivada da coluna de distribuição. Este ramal se desenvolve horizontalmente pela unidade habitacional com o objetivo de abastecer o ramal de distribuição secundário (RDS), que por sua vez alimenta dois ou mais pontos de utilização dentro de cada área molhada (banheiro, cozinha e área de serviço).

O sub-ramal é o trecho que alimenta um único ponto de utilização.

É importante ressaltar que, nas edificações que empregam a medição individualizada, o uso de bacias sanitárias com válvulas de descarga é vetado.

1.3.1. INTERFACES COM A ARQUITETURA

O local da instalação dos medidores deve ser em área comum do edifício, sendo os medidores abrigados adequadamente e acessíveis para leitura visual e manutenção. Deve ser adotado um único medidor para cada unidade autônoma. Deve ser prevista a infraestrutura adequada para o sistema de medição remota dos hidrômetros – dutos para comunicação e alimentação dos medidores, ponto de energia elétrica.

O traçado da rede de distribuição no sistema de medição individual da água é diferente do sistema de distribuição convencional (sem medição individualizada).

As colunas de água são centralizadas, de modo que a distribuição horizontal é feita em cada apartamento, gerando a necessidade de rebaixo em gesso ou sancas no interior das unidades habitacionais. O sistema de medição individualizada deve ser integrado ao sistema construtivo proposto pela arquitetura, de forma harmônica, racional e tecnicamente correta. Portanto, o traçado da rede interna de distribuição dentro das unidades consumidoras deve ser estudado pelos profissionais envolvidos para minimizar o impacto na estética e no custo da instalação.

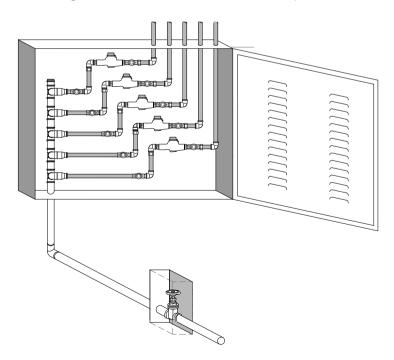
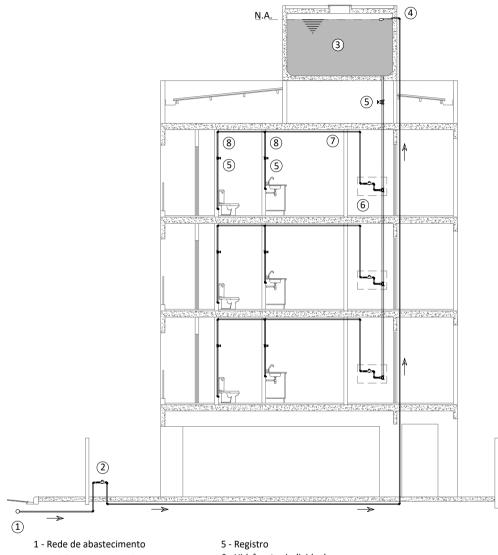
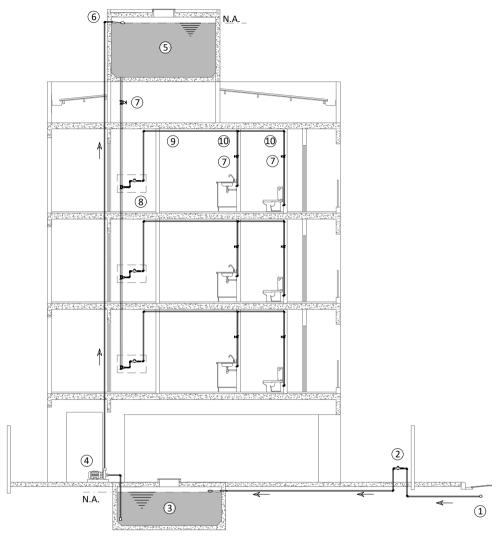




Figura 1.3 Caixa de proteção metálica para seis hidrômetros.

- 2 Hidrômetro principal
- 3 Reservatório superior
- 4 Abastecimento resevatório
- 6 Hidrômetro individual
- 7 Ramal distribuição principal
- 8 Ramal de distribuição secundário

Figura 1.4 Medição individualizada sem sistema de recalque.

- 1 Rede de abastecimento
- 2 Hidrômetro principal
- 3 Reservatório inferior
- 4 Bomba centrifuga
- 5 Reservatório superior
- 6 Abastecimento reservatório
- 7 Registro
- 8 Hidrômetro individual
- 9 Ramal de distribuição principal
- 10 Ramal de distribuição secundário

Figura 1.5 Medição individualizada com sistema de recalque.

1.4 SISTEMAS DE ABASTECIMENTO DE ÁGUA E O PROJETO DE ARQUITETURA

Antes da elaboração do projeto arquitetônico deve-se definir o sistema de abastecimento da rede predial de distribuição. Existem três sistemas de abastecimento: direto, indireto e misto.

Cada um desses sistemas apresenta vantagens e desvantagens que devem ser analisadas pelo projetista de arquitetura, conforme a realidade local e as características do edifício em que esteja trabalhando. A seguir, são apresentadas as principais interfaces desses sistemas com o projeto arquitetônico.

1.4.1 SISTEMA DE DISTRIBUIÇÃO DIRETO

A alimentação da rede predial de distribuição é feita diretamente da rede pública de abastecimento. Nesse caso, não existe reservatório domiciliar, e a distribuição é feita de forma ascendente, ou seja, as peças de utilização de água são abastecidas diretamente da rede pública.

Esse sistema tem baixo custo de instalação, porém, se houver qualquer problema que ocasione a interrupção no fornecimento de água no sistema público, certamente faltará água na edificação.

Quando o tipo de abastecimento do sistema de distribuição é direto, devem ser tomadas precauções para que seus componentes não sejam submetidos a pressões elevadas.

Para evitar pressão excessiva nos aparelhos de uso de água as seguintes precauções devem ser tomadas: instalar um redutor de pressão na linha de abastecimento para reduzir a pressão da água para níveis seguros para os aparelhos de uso; a pressão da água deve ser verificada regularmente para garantir que ela esteja dentro dos limites de segurança; instalar válvulas de alívio de pressão em alguns equipamentos para aliviar a pressão excessiva quando necessário; instalar reguladores de fluxo nos aparelhos de utilização, como chuveiros, para reduzir a quantidade de água que flui através deles. Isso ajuda a manter a pressão sob controle.

As tubulações devem ser verificadas regularmente em busca de vazamentos e obstruções que possam aumentar a pressão da água.

Com relação ao projeto arquitetônico esse sistema dispensa reservatórios e apresenta menor custo da estrutura, pois há menor carga depositada sobre a edificação; dispõe de maior área útil, já que o espaço destinado aos reservatórios pode ser utilizado para outros fins e garante melhor qualidade de água, tendo em vista que o reservatório pode se constituir em fonte de contaminação (limpeza inadequada, possibilidade de entrada de elementos estranhos etc.).

A grande desvantagem desse tipo de sistema é que ele fica inoperante quando falta água na rede de abastecimento pública. Além disso, é um sistema que necessita de dispositivos para impedir o retorno da água e evitar a contaminação da rede pública.

Em caso de funcionamento inadequado do dispositivo (componente mecânico) pode ocorrer contaminação da rede pública.

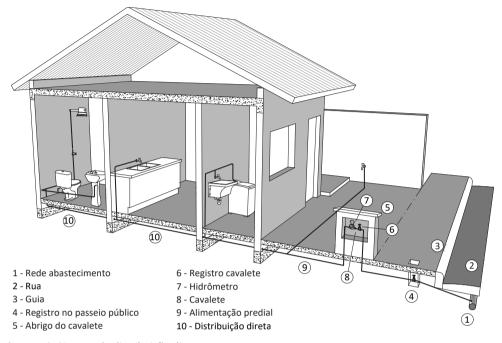


Figura 1.6 Sistema de distribuição direto.

1.4.2 SISTEMA DE DISTRIBUIÇÃO INDIRETO

No sistema indireto, adotam-se reservatórios para minimizar os problemas referentes à intermitência ou a irregularidades no abastecimento de água e a variações de pressões da rede pública. No sistema indireto, consideram-se três situações, descritas a seguir.

1.4.2.1 Sistema indireto sem bombeamento

Esse sistema é adotado quando a pressão na rede pública é suficiente para alimentar o reservatório superior. O reservatório interno da edificação ou do conjunto de edificações alimenta os diversos pontos de consumo por gravidade; portanto, ele deve estar sempre a uma altura superior a qualquer ponto de consumo.

Obviamente, a grande vantagem desse sistema é que a água do reservatório garante o abastecimento interno, mesmo que o fornecimento da rede pública seja provisoriamente interrompido.

A rede predial fica menos exposta às falhas da rede pública de abastecimento, uma vez que com o reservatório se garante, dentro do possível, a continuidade da vazão e pressão

necessárias para o sistema predial. Por ser um sistema alimentado diretamente pela rede pública, ou seja, sem conjunto moto-bomba gera também economia de energia elétrica.

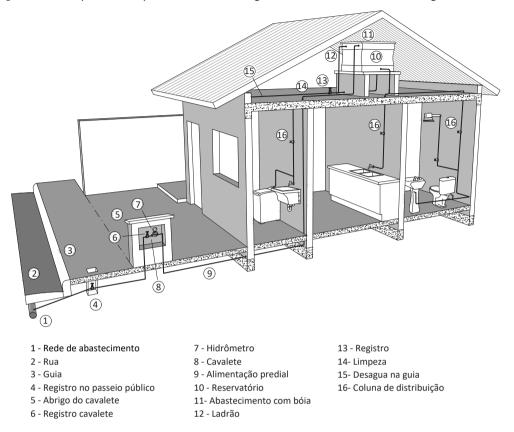


Figura 1.7 Sistema indireto sem bombeamento.

1.4.2.2 Sistema indireto com bombeamento

Esse sistema, normalmente, é utilizado quando a pressão da rede pública não é suficiente para alimentar diretamente o reservatório superior – como em edificações com mais de dois pavimentos.

Nesse caso, adota-se um reservatório inferior, de onde a água é bombeada até o reservatório elevado, por meio de um sistema de recalque. A alimentação da rede de distribuição predial é feita por gravidade, a partir do reservatório superior.

Assim como no sistema indireto sem bombeamento, a rede predial fica menos exposta as falhas da rede pública de abastecimento, uma vez que com o(s) reservatório(s) se garante, dentro do possível, a continuidade da vazão e pressão necessárias para o

sistema predial. Entretanto, pelo fato de possuir reservatórios existe a possibilidade de contaminação da água no reservatório por falta de manutenção (ausência de limpeza). Esse sistema apresenta maior custo: devido ao acréscimo de carga na estrutura, decorrente da existência de um reservatório superior; maior tempo de execução da obra, pois a existência de reservatório implica uma estrutura mais complexa e maior área de construção, com o acréscimo das áreas dos reservatórios (menor área útil).

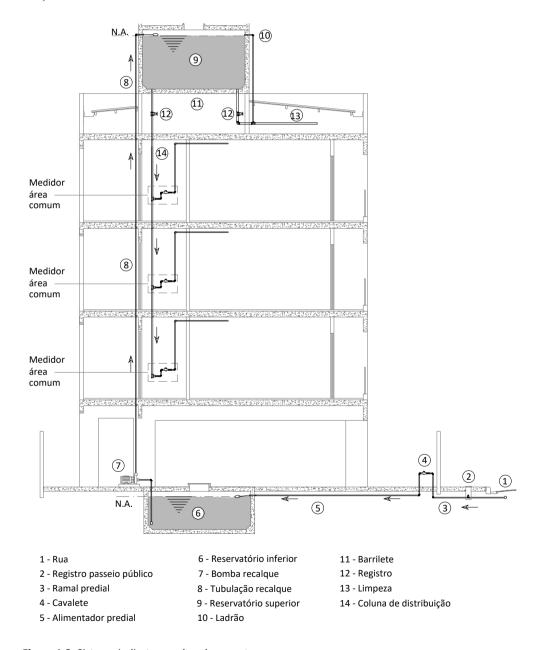


Figura 1.8 Sistema indireto com bombeamento.

1.4.2.3 Sistema indireto hidropneumático

No sistema indireto hidropneumático, o escoamento na rede de distribuição é pressurizado através de um tanque de pressão contendo ar e água. Ele pode ser com ou sem bombeamento, ou, ainda, com bombeamento e reservatório inferior (RI). Ele é adotado sempre que há necessidade de pressão em determinado ponto da rede, que não pode ser obtida pelo sistema indireto por gravidade, ou quando, por razões técnicas e econômicas, se deixa de construir um reservatório elevado.

É um sistema que demanda alguns cuidados especiais. Além do custo adicional, exige manutenção periódica. Além disso, caso falte energia elétrica na edificação, ele fica inoperante, necessitando de gerador alternativo para funcionar.

Esse sistema tem custo elevado, exige manutenção frequente e pode ficar inoperante em caso de falta de energia elétrica, necessitando de gerador alternativo para que não haja falta de água. Assim, só é recomendado em casos especiais.

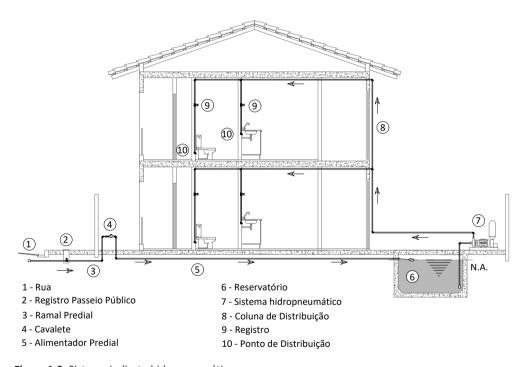


Figura 1.9 Sistema indireto hidropneumático.

1.4.3 SISTEMA DE DISTRIBUIÇÃO MISTO

No sistema de distribuição mista, parte da alimentação da rede de distribuição predial é feita diretamente pela rede pública de abastecimento, e parte é feita pelo reservatório superior.

Esse sistema é o mais usual e é mais vantajoso que os demais, pois algumas peças podem ser alimentadas diretamente pela rede pública, como torneiras externas, tanques em áreas de serviço ou edícula, situados no pavimento térreo. Nesse caso, como a pressão na rede pública quase sempre é maior do que a obtida a partir do reservatório superior, os pontos de utilização de água terão maior pressão.

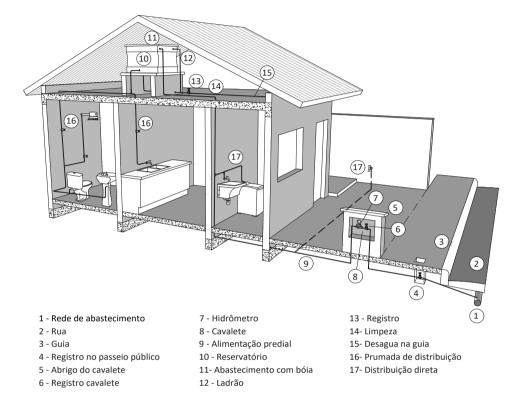


Figura 1.10 Sistema de distribuição misto.

1.5 APARELHOS SANITÁRIOS E O PROJETO DE ARQUITETURA

O aparelho sanitário é um componente da instalação destinado ao uso da água ou ao recebimento de dejetos líquidos e sólidos (na maioria das vezes, pertencentes à instalação de esgoto sanitário). Incluem-se nessa definição aparelhos como lavatórios, bacias, bidês, banheiras de hidromassagem, pias, tanques, máquinas de lavar roupa e de lavar pratos etc.

Recomenda-se que as peças de utilização possuam vazões que permitam tornar o mais eficiente possível o uso da água nelas utilizadas, o que implica a redução do consumo de

água a valores mínimos necessários e suficientes para o bom funcionamento dessas peças e para o atendimento dos requisitos do usuário.

A norma de desempenho NBR 15575-1:2021, em seu Anexo F, apresenta uma sugestão das possíveis formas de organização dos cômodos e dimensões compatíveis com as necessidades humanas. Essa parte da norma também indica as dimensões mínimas de mobiliário e circulação das áreas molhadas.

A definição e a localização desses aparelhos deverão, obrigatoriamente, constar do projeto arquitetônico. Para tanto, é necessário o conhecimento de alguns aspectos técnicos dos diversos aparelhos existentes no mercado como condição básica para uma perfeita integração e compatibilização da arquitetura com os projetos de estrutura e instalações do edifício. A estética e o custo também devem ser analisados pelo projetista, antes da escolha e especificação do produto.

As normas brasileiras fixam as exigências para fabricação dos aparelhos sanitários, que devem satisfazer às condições de conforto, higiene, facilidade de limpeza e desobstrução, durabilidade etc. Existe, no mercado, grande variedade de marcas e dimensões, todas buscando atender às condições mencionadas.

Em qualquer tipo de edifício, o arquiteto deve prever, no projeto, quantidades adequadas de aparelhos sanitários. Para isso, deve consultar o Código de Obras da municipalidade, para saber das exigências locais. Caso não consiga as informações necessárias, poderá consultar a Tabela 1.2, que serve de orientação aos projetistas. Essa tabela, publicada no Uniform Plumbing Code (IAPMO, 1955), apresenta as instalações sanitárias mínimas em função do tipo de edifício ou ocupação.

O conhecimento das normas pertinentes, assim como de alguns códigos estaduais que regulamentam a questão, é também de extrema importância. Muitos órgãos e entidades governamentais possuem suas próprias regulamentações, critérios e itens, que devem ser analisados e considerados para calcular a quantidade mínima de aparelhos no projeto de alguns tipos especiais de edificação, como escolas, hospitais, bancos, edifícios públicos etc.

Tipo de edifício ou de ocupação	Bacias sanitárias	Mictórios	Lavatórios	Banhei- ras ou chuveiros	Bebe- douros **
Residência ou aparta- mento ***	1 para cada residên- cia ou apartamento + 1 para serviço		1 para cada residência	1 para cada residência ou apartamento + 1 chuveiro para serviço	

Tabela 1.2 Instalações mínimas*

(continua)

Tabela 1.2 Instalações mínimas* (continuação)

Tipo de edifício ou de ocupação	Bacias sanitárias		Mictórios	Lavatórios		Banhei- ras ou chuveiros	
Escolas primárias	Meninos: 1 para cada 100; meninas: 1 para cada 35		1 para cada 30 meninos	1 para cada 60 pessoas			1 para cada 75 pessoas
Escolas secundárias	Meninos: 1 para cada 100; meninas: 1 para cada 45		1 para cada 30 meninos	1 para cada 100 pessoas		1 para cada 20 alunos (havendo educação física)	
Edifícios pú- blicos ou de escritórios	Número de pessoas 1-15 16-35 36-55 56-80 81-110 111-150 Acima d adicio 1 aparel cada 40	onar ho para	Havendo mictórios, instalar 1 WC a menos para cada mictório, desde que o número de WC não seja reduzido a menos de $\frac{2}{3}$ do especificado	Número de apapessoas relhos 1-15 1 16-35 2 36-60 3 61-90 4 91-125 5 Acima de 125, adicionar 1 aparelho para cada 45 pessoas			1 para cada 75 pessoas
Indústrias	Número de pessoas 1-9 10-24 25-29 30-74 75-100	Número de apa- relhos 1 2 3 4 5	Havendo mictórios, instalar 1 WC a menos para cada mictório, desde que o número de WC não seja reduzido a menos de $\frac{2}{3}$	Número de pessoas 1-100	Número de apa- relhos 1 para cada 10 pessoas	1 chuveiro para cada 15 pessoas expostas a calor excessivo ou contaminação de pele com	1 para cada 75 pessoas
	Acima d adicio 1 apa para 30 empr	onar relho cada	do previsto	1 para cada 15 pessoas****		substâncias venenosas ou irritantes	

(continua)

Tabela 1.2 Instalações mínimas* (continuação)

Tipo de edifício ou de ocupação			Mictórios		Lavatórios		Banhei- ras ou chuveiros	Bebe- douros **
Teatros, auditórios e locais de reunião	Número de pessoas 1-100 101-200 201-400 Acima o 1 aparel cada 500	ho para homens	1 apare cada 300		1 para			1 para cada 100 pessoas
Dormitórios	Número de pessoas 1-10 1-8 Acima 1 para cao mens ad Acima 1 para cac lheres acid	Número de apa- relhos homem/ mulher 1/0 0/1 de 10, da 25 ho- icionais de 8, la 20 mu-	1 para cada 25 homens Acima de 150, adicionar 1 aparelho para cada 50 homens		1 para 12 pe (prever rios para dental, n para 50 pe Adiciona tório pa 20 hor para c	1 para cada 500 pessoas 1 para cada 12 pessoas (prever lavatórios para higiene dental, na razão 1 para cada 50 pessoas). Adicionar 1 lavatório para cada 20 homens, 1 para cada 15 mulheres		1 para cada 75 pessoas

^{*} Fonte: IAPMO, 1955.

1.5.1 INSTALAÇÕES EM BANHEIROS

Para as áreas destinadas à higiene pessoal, recomenda-se que os projetos de arquitetura de edifícios habitacionais prevejam, no mínimo: lavatório, chuveiro (box) e bacia sanitária. No caso de lavabos, não é necessário o chuveiro.

^{**} Bebedouros não devem ser instalados em compartimentos sanitários.

^{***} Um tanque para cada residência ou dois para cada dez apartamentos. Uma pia de cozinha para cada residência ou apartamento.

^{****} Onde houver contaminação da pele com germens ou matérias irritantes, prever um lavatório para cada cinco pessoas.

O planejamento das instalações de um banheiro é de fundamental importância para se obter resultados satisfatórios quanto a seu uso e funcionamento. Portanto, ao projetá-lo, deve-se levar em consideração a tipologia de suas utilizações (residencial, comercial, industrial etc.), não esquecendo que se está criando ou reorganizando um espaço de utilização específica, cujas dimensões devem oferecer um conforto adequado quanto à distribuição das peças. Para atender aos parâmetros de conforto e funcionalidade, antes da elaboração do projeto, é extremamente importante pesquisar alguns detalhes técnico-construtivos nos catálogos dos fabricantes de aparelhos e dispositivos hidrossanitários, bem como em algumas revistas específicas¹.

Para uma boa distribuição interna das peças, as boas normas de higiene determinam que se coloque, sequencialmente, a partir do vão de acesso: lavatório, vaso sanitário, ducha higiênica, chuveiro e banheira.

1.5.1.1 Lavatório

Os lavatórios podem ser de bancada, de parede ou de coluna, existentes no mercado em grande variedade de modelos e dimensões. No projeto, o profissional deve especificar o tipo mais indicado, analisando o uso, a função, a estética e o conforto, além do custo final. Se especificar uma cuba de embutir ou de sobrepor, por exemplo, haverá necessidade de uma bancada de granito ou similar, além de sifões e engates com melhor acabamento, se forem ficar aparentes. Por outro lado, os lavatórios de coluna têm custo final mais baixo, por esconderem o sifão e os engates, mas eliminam a possibilidade de utilização de armários sob a bancada.

Quanto ao uso, os lavatórios poderão ser do tipo individual ou coletivo. Nesse caso, é importante indicar torneiras que controlem o racionamento de água, além de deixar uma distância mínima de 60 cm do eixo de uma cuba a outra, quando em uma mesma bancada.

A alimentação de água poderá ser feita só com água fria ou com água fria e quente (por meio de aparelho misturador). O ponto de água fria deve ser localizado a 10 cm do eixo de simetria da peça; quando fria e quente, a 20 cm. A altura de ambos os pontos é de 60 cm do piso acabado.

O esgotamento do aparelho é realizado a partir da válvula que fica acoplada a um sifão (plástico ou metálico), e, a partir deste, vai para uma caixa sifonada. A altura do ponto de saída de esgoto é a 50 cm do piso acabado.

A norma que especifica os requisitos para a instalação de lavatórios é NBR 16728-2:2019 -Tanques, lavatórios e bidês Parte 2: Procedimento para instalação. Para o caso de aparelhos sanitários para utilização por portadores de necessidades especiais, deve-se consultar a NBR 9050:2020 - Acessibilidade a edificações, mobiliário, espaços e equipamentos urbanos.

¹ Netto; Morais, 1990.

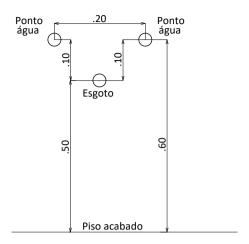


Figura 1.11 Instalação de lavatório.

1.5.1.2 Bacia sanitária

Atualmente, existem no mercado vários modelos de bacia, mas o que os difere, basicamente, é o dispositivo de funcionamento. As bacias podem funcionar por sifonagem (bacias convencionais que descarregam o esgoto para baixo) ou pelo princípio do arraste (bacias de saída horizontal, que podem direcionar o fluxo tanto no sentido horizontal como para baixo).

A limpeza das bacias poderá ser feita por meio de válvula ou caixa de descarga. A válvula apresenta a desvantagem do barulho e o alto consumo de água, particularmente as mais antigas. A caixa apresenta como desvantagens a demora entre duas descargas consecutivas, a maior necessidade de manutenção e o aspecto estético e/ou de dimensionamento; ela pode ser suspensa, embutida na parede ou ainda acoplada ao vaso sanitário, com capacidades que variam de acordo com o fabricante.

Os dispositivos de descarga evoluíram muito nos últimos anos. As caixas vêm conseguindo, gradativamente, aumentar sua participação no mercado brasileiro, depois de muita resistência por parte dos consumidores. Duas razões têm justificado essa resistência: o sistema operacional é mais lento e o equipamento ocupa mais espaço no banheiro.

Se o dispositivo escolhido for válvula de descarga, a distância (altura) mínima entre a válvula e a saída da água do reservatório deverá ser de 2 m. Uma distância menor poderá comprometer o bom funcionamento da válvula. Essa medida determina a bitola da válvula, que é responsável pela quantidade de água no vaso. Em residências, usualmente, utiliza-se a bitola de $1\frac{1}{2}$ " (uma polegada e meia), adequada para baixa pressão, com saída exclusiva da caixa-d'água, para não comprometer a vazão do chuveiro ou da torneira do lavatório. Para pressões (alturas) acima de 15 m.c.a., devese utilizar válvulas com bitola de $1\frac{1}{4}$ " (uma polegada e um quarto).

Em bacias sanitárias com caixa acoplada, a tubulação é mais leve, $\frac{1}{2}$ " (meia polegada), e não exige saída exclusiva do reservatório, pois a descarga da bacia não interfere na vazão das demais peças de utilização. O ponto de esgoto deve ter seu eixo de 30 cm a 45 cm da parede, dependendo do modelo adotado.

Quando o dispositivo de limpeza utilizado for válvula de descarga ou caixa de embutir, a saída de água para a bacia sanitária será sempre a 33 cm do piso acabado. O ponto de esgotamento deve ter seu eixo de 25 cm a 30 cm da parede, dependendo do modelo adotado. O esgotamento é feito ligando-se a saída da bacia sanitária ao esgoto primário.

A norma que especifica os requisitos para as bacias sanitárias (convencionais, com caixa acoplada e integrada) fabricadas em qualquer material, destinadas à instalação em sistema predial de água potável é a NBR 16727-1:2019 - Bacia sanitária - Parte 1: Requisitos e métodos de ensaio.

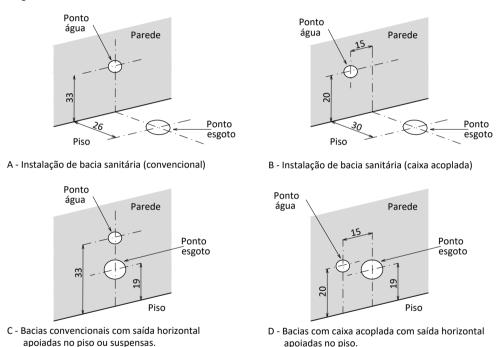


Figura 1.12 Instalação de bacias sanitárias (pontos de água e esgoto).

1.5.1.3 Bidê e ducha manual

Bidê é uma palavra que vem do francês, *bidet*, uma invenção francesa do final do século XVII ou do começo do XVIII, embora não se saiba exatamente a data e o inventor. Defendido por uns e criticado por outros, o bidê foi uma peça bastante comum nos banheiros das residências de classes média e alta.

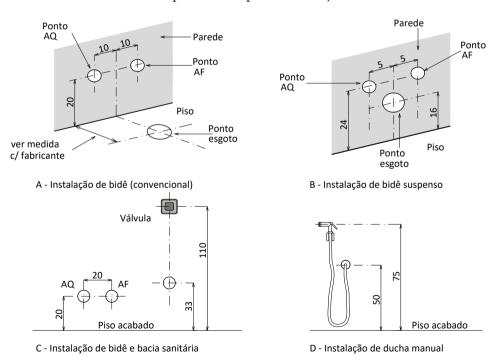
Tecnicamente, o uso do bidê sempre foi muito questionado pela possibilidade de ocorrer a contaminação da rede de abastecimento de água potável por retrossifonagem. Seu uso deve ser evitado para fazer a higiene íntima, pois pode haver risco de contaminação por fezes que ficam nos orifícios do chuveiro fixo do bidê. Por essa razão, há muito tempo o bidê vem sendo gradativamente substituído pela ducha manual, instalada próxima à bacia sanitária. Na ausência da ducha higiênica, o mais indicado é usar o chuveirinho móvel, aquele que fica na mangueira do chuveiro.

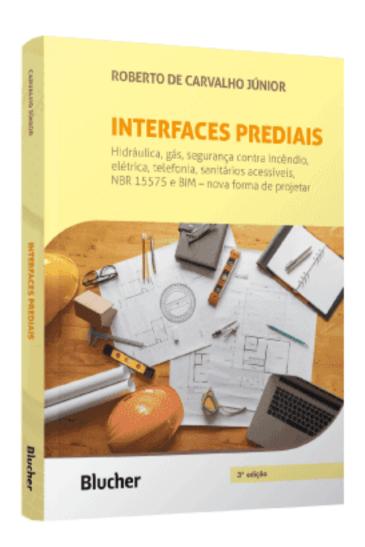
O ponto de alimentação de água fria do bidê deve ser a 20 cm do piso acabado. Quando alimentado por água fria e quente, utilizando-se misturador, a altura é a mesma, e os pontos devem ficar simétricos em relação ao eixo da peça, com um espaçamento de 20 cm, sendo o ponto da esquerda o convencionado para água quente.

O ponto de esgotamento deve ter seu eixo a 25 cm da parede, dependendo do fabricante e do modelo adotado. O esgotamento é feito por ligação do ramal de descarga do bidê à caixa sifonada.

As duchas higiênicas são uma alternativa moderna ao bidê. Adaptam-se a banheiros de qualquer tamanho e proporcionam mais conforto aos usuários.

Os pontos de alimentação de água fria e quente devem ser a 50 cm do piso acabado. No uso profissional, a ducha manual também é indicada para a lavagem de cabelos em salões de beleza, e sua altura pode ser adaptada em função de uso.




Figura 1.13 Instalação de bidê e ducha manual.

Este livro foi desenvolvido com a finalidade de apresentar a arquitetos, engenheiros civis e alunos dos cursos de Arquitetura e Urbanismo e de Engenharia Civil uma visão conceitual simples e didática dos vários subsistemas das instalações prediais e suas principais interfaces com o projeto de arquitetura, bem como mostrar a necessidade de integração das instalações com os demais subsistemas construtivos envolvidos na construção de um edifício. Nesta nova edição, o autor incluiu um capítulo sobre a importância da tecnologia BIM (building information modeling ou modelagem de informação da construção), que vem sendo cada vez mais utilizada por escritórios de arquitetura e engenharia, tanto no Brasil quanto no exterior. Trata-se de um conceito que envolve o gerenciamento de informações dentro de um edifício desde sua fase inicial de projeto, para o qual é criado um modelo digital que abrange todo o ciclo de vida da edificação.

Blucher

Clique aqui e:

VEJA NA LOJA

Interfaces prediais

Hidráulica, gás, segurança contra incêndio, elétrica, telefonia, sanitários acessíveis, NBR 15575: edificações habitacionais – desempenho e BIM nova forma de projetar

Roberto de Carvalho Júnior

ISBN: 9786555064100

Páginas: 312

Formato: 17 x 24 cm

Ano de Publicação: 2023