

JOSÉ ROBERTO SIMÕES-MOREIRA ALBERTO HERNANDEZ NETO

FUNDAMENTOS E APLICAÇÕES DA

PSICROMETRIA

Blucher

2° EDIÇÃO

José Roberto Simões-Moreira Alberto Hernandez Neto

FUNDAMENTOS E APLICAÇÕES DA PSICROMETRIA

2ª edição

Fundamentos e aplicações da psicrometria, 2. ed.
© 2019 José Roberto Simões-Moreira e Alberto Hernandez Neto Editora Edgard Blücher Ltda.

Imagem da capa: iStockphoto

Blucher

Rua Pedroso Alvarenga, 1245, 4º andar 04531-934 - São Paulo - SP - Brasil Tel.: 55 11 3078-5366

contato@blucher.com.br www.blucher.com.br

Segundo o Novo Acordo Ortográfico, conforme 5. ed. do *Vocabulário Ortográfico da Língua Portuguesa*, Academia Brasileira de Letras, março de 2009.

É proibida a reprodução total ou parcial por quaisquer meios sem autorização escrita da editora.

Dados Internacionais de Catalogação na Publicação (CIP)

Angélica Ilacqua CRB-8/7057

Simões-Moreira, José Roberto

Fundamentos e aplicações da psicrometria / José Roberto Simões-Moreira, Alberto Hernandez Neto. - 2. ed. - São Paulo : Blucher, 2019.

280 p.; il.

Bibliografia ISBN 978-85-212-1839-5 (impresso) ISBN 978-85-212-1840-1 (e-book)

1. Higrometria 2. Termodinâmica 3. Engenharia térmica I. Título. II. Hernandez Neto, Alberto.

19-1091 CDD 621.402

Índice para catálogo sistemático:

1. Psicometria

Todos os direitos reservados pela Editora Edgard Blücher Ltda.

CONTEÚDO

L.	CONCEITOS FUNDAMENTAIS		21
	1.1	Propriedades termodinâmicas	21
	1.2	Temperatura e escalas de temperatura	22
	1.3	Pressão	23
	1.4	Volume específico e densidade	25
	1.5	Substância pura	26
	1.6	Propriedades e tabelas termodinâmicas da água	26
	1.7	Ar atmosférico, ar seco e ar úmido	29
	1.8	Sistema e volume de controle	29
	1.9	Equação de estado – gás perfeito	30
	1.10	Mistura de gases perfeitos	31
	1.11	Fator de compressibilidade	32
	1.12	Mistura de gases reais	33
	1.13	Energia interna e entalpia	33
	1.14	Trabalho e calor	34

	1.15	Calores específicos	34
	1.16	Lei da conservação de massa ou da continuidade	36
	1.17	Lei da conservação da energia	39
	Probl	emas propostos	43
2.	PAR	ÂMETROS E PROPRIEDADES PSICROMÉTRICOS	47
	2.1	Umidade absoluta	47
	2.2	Umidade relativa	48
	2.3	Grau de saturação	49
	2.4	Nota sobre as propriedades específicas	50
	2.5	Volume específico	50
	2.6	Entalpia e entalpia específica	51
	2.7	Calor específico a pressão constante – expressão	
		para cálculo da entalpia a partir de $C_{_{p}}$	52
	2.8	Temperatura de bulbo seco	53
	2.9	Temperatura de orvalho	53
	2.10	Processo de saturação adiabática – psicrômetro adiabático	55
	2.11	Psicrômetro e temperatura de bulbo úmido	58
	2.12	$\mathit{TBU} imes temperatura$ de bulbo úmido termodinâmica	59
	2.13	Correlações úteis	60
	2.14	Algoritmos psicrométricos	63
	2.15	Programas de psicrometria	70
	2.16	Ar úmido – uma abordagem mais realista usando	74
	2 17	o fator de intensificação	74
	2.17	Equação de estado do ar úmido e seus componentes – volume específico	81
	2.18	Entalpia específica do ar úmido saturado	86
	2.19	Tabelas de ar úmido saturado e seu uso	88
	2.20	Recomendações finais	88
		emas propostos	89

Conteúdo 19

3.	DIA	GRAMA PSICROMÉTRICO E PROCESSOS BÁSICOS	91
	3.1	Apresentação	91
	3.2	Construção	94
	3.3	Processos básicos	106
	3.4	Calor sensível, calor latente, calor total e fator	
		de calor sensível	120
	Prob	lemas propostos	121
4.	APL	ICAÇÃO EM SISTEMAS DE CLIMATIZAÇÃO	125
	4.1	Conforto térmico e psicrometria	125
	4.2	Sistemas de climatização	127
	4.3	Controle de condições psicrométricas em sistemas	
		de climatização	138
	Prob	lemas propostos	145
5.		CROMETRIA E TRANSFERÊNCIA DE CALOR	
	EM	PAREDE MOLHADA	147
	5.1	Coeficientes de transferência de calor e massa	147
	5.2	Transferência simultânea de calor e massa	155
	5.3	Psicrômetro	162
	5.4	Mais sobre <i>TBU</i> e <i>TBU</i> termodinâmica	168
6.	EQU	JIPAMENTOS DE TRANSFERÊNCIA DE CALOR	
	E M	ASSA DE AR ÚMIDO	173
	6.1	Torres de resfriamento	173
	6.2	Resfriamento evaporativo	195
	Prob	lemas propostos	199

7.	INS	TRUMENTAÇÃO	201
	7.1	Temperatura	201
	7.2	Psicrômetro	210
	7.3	Higrômetros de umidade relativa	215
	7.4	Higrômetro de temperatura de orvalho	217
	7.5	Outros tipos de higrômetros	218
	7.6	Nota sobre calibração	218
	7.7	Sistemas de medição a distância e automatizados	220
8.	TÓP	ICOS ADICIONAIS	223
	8.1	Mistura de gases não condensáveis e vapor de água	223
	8.2	Psicrometria de alta temperatura	230
	8.3	Psicrometria da combustão	233
	8.4	Recuperação de água de produtos de combustão	236
	8.5	Neblina	237
RE	FERÊ	NCIAS	239
ΑP	ÊNDI	CE A – CONVERSÃO DE UNIDADES	243
АР	ÊNDI	CE B – TABELAS DE VAPOR DE ÁGUA	247
		CE C – PROPRIEDADES DO AR ÚMIDO SATURADO ÁLCULOS REAIS	251
ΑP	ÊNDI	CE D – DIAGRAMAS PSICROMÉTRICOS	263
АР	ÊNDI	CE E – INSTALAÇÃO E USO DO APLICATIVO PSICRO	273
ΔР	ÊNDI	CE F – RESPOSTAS DOS PROBLEMAS PROPOSTOS	277

CAPÍTULO 1

Conceitos fundamentais

1.1 PROPRIEDADES TERMODINÂMICAS

Para iniciar os estudos em *psicrometria*, é conveniente que algumas definições sejam apresentadas com o objetivo de se estabelecer uma linguagem técnica comum que permita precisar os termos utilizados. Isso também permite conduzir um estudo mais apropriado da mistura de gases e vapor de água que forma o ar atmosférico, bem como fundamentar as limitações e a faixa de uso do modelo elementar de mistura de gases perfeitos, que é o modelo normalmente utilizado para descrever o comportamento do ar. Para isso, o presente capítulo inicialmente apresenta alguns conceitos úteis de termodinâmica, a começar pela relação entre estado e propriedade. O rigor é abandonado em função de uma clareza para o entendimento dos conceitos e dos princípios relevantes.

Uma propriedade termodinâmica de uma substância ou sistema se refere a qualquer característica observável ou mensurável que depende do estado termodinâmico. O estado termodinâmico, por sua vez, é estabelecido a partir de um certo conjunto de propriedades. Portanto, há uma relação funcional única entre o estado termodinâmico de uma substância ou sistema e as suas propriedades termodinâmicas. Essas duas definições são interdependentes, e o entendimento de uma depende do conhecimento da outra. Talvez seja mais fácil recorrer às noções de propriedades com as quais todo leitor certamente está familiarizado. Propriedades familiares são pressão, temperatura e densidade (ou massa específica). O estado da substância ou do sistema decorre do estabelecimento de um certo número de propriedades, e vice-versa, isto é, sabendo-se que uma substância ou sistema tem seu estado determinado, então também suas propriedades termodinâmicas estão definidas. Exemplificando: quando se diz que a

pressão e a temperatura de um gás são conhecidas, então o estado termodinâmico daquele gás está determinado. Assim, todas as demais propriedades também estão fixadas, como a densidade, por exemplo. Essa informação é útil, pois basta definirmos um certo número de propriedades, nesse caso apenas duas, para fixarmos o estado termodinâmico e podermos afirmar que todas as demais propriedades também são fixas para aquelas pressão e temperatura.

1.2 TEMPERATURA E ESCALAS DE TEMPERATURA

A temperatura é o tipo do conceito que é difícil de se definir com rigor, pois está intimamente ligada ao movimento e à agitação molecular da substância. Porém, todos possuem um conceito primitivo do seu significado, e as noções elementares de "quente" e "frio" podem auxiliar no seu entendimento. A quantificação da temperatura é realizada com o emprego de escalas, das quais as utilizadas com maior frequência são a escala Fahrenheit, °F, e a escala Celsius, °C. Originalmente, a escala Celsius foi concebida associando valores de temperatura a dois pontos de mudança de fase da água, quais sejam, 0 °C para o ponto de solidificação da água a pressão normal (101,325 kPa = 1 atm) e 100 °C para a vaporização da água, também a pressão normal. Numa reforma posterior (1954), a escala Celsius foi modificada em termos de definir apenas um ponto fixo correspondente ao estado em que as três fases da água (líquido, vapor e sólido) coexistem em equilíbrio, conhecido por ponto triplo, cujo valor é de 0,01 °C. Nessa reforma, o valor de 100 °C foi mantido para a vaporização da água a pressão normal. No sistema inglês, 0 °C vale 32 °F e 100 °C vale 212 °F. Os fatores de conversão de uma escala para outra são

$$^{\circ}C = \frac{5}{9} (^{\circ}F - 32)$$
 (1.1)

e

$$^{\circ}F = \frac{9}{5} \,^{\circ}C + 32$$
 (1.2)

Essas duas escalas de temperatura são relativas, pois dependem de valores de temperatura de referência (ponto triplo da água). É também possível que se defina uma escala absoluta de temperatura, para a qual um zero absoluto existe. A escala absoluta de temperatura associada com a escala Farenheit é a Rankine, enquanto a escala absoluta associada com a Celsius é a Kelvin. Os fatores de conversão são

$$^{\circ}R = ^{\circ}F + 459,69$$
 (1.3)

e

$$K = {}^{\circ}C + 273,15 \tag{1.4}$$

Note que na escala Kelvin o símbolo de grau (°) é dispensado.

1.3 PRESSÃO

Pressão é a componente normal da força por unidade de área que age em um fluido em repouso e é igual em todas as direções em torno de um ponto do meio fluido. O esquema da Figura 1.1 ilustra as diversas formas de se apresentar a pressão de um sistema, as quais podem ser uma pressão absoluta ou relativa. Os adjetivos absoluta ou relativa que acompanham o termo pressão dependem do instrumento que foi utilizado para medir o seu valor. Os nomes desses instrumentos estão indicados na Figura 1.1. A pressão atmosférica local é medida pelo barômetro. A pressão de um sistema é geralmente medida por um manômetro, o qual indicará um valor positivo se o sistema apresentar uma pressão maior que a atmosférica ou indicará um valor negativo se a pressão do sistema for menor que a atmosférica. Nesse último caso, o manômetro também é chamado de manômetro de vácuo ou vacuômetro. Em qualquer caso, a referência, ou valor zero, é a pressão atmosférica. Caso se deseje a pressão absoluta do sistema, devese somar ou subtrair a pressão atmosférica, conforme a situação.

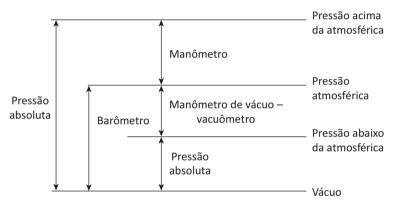


Figura 1.1 Esquema ilustrativo para indicar as várias formas de apresentar a propriedade pressão.

Um método simples geralmente empregado para medir baixos desníveis de pressão é baseado no *manômetro de coluna de líquido*. A pressão de um sistema, cujo valor é desconhecido, pode ser medida usando um arranjo semelhante ao que está ilustrado na Figura 1.2. Utilizando a bem conhecida equação da carga hidrostática para a diferença de pressão entre dois níveis de uma coluna de líquido, tem-se que

$$\Delta P = P_B - P_A = \rho g h \tag{1.5}$$

em que ρ é densidade do líquido, h é o desnível e g é a aceleração da gravidade local (\cong 9,81 m/s²).

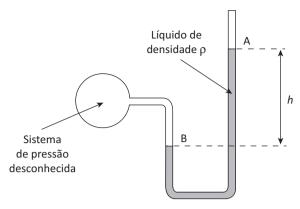


Figura 1.2 Método do desnível da coluna de líquido para a medida da pressão.

Embora os manômetros de coluna de mercúrio ainda sejam utilizados, graças à elevada densidade desse metal líquido, bem como à sua baixa pressão de vaporização, essa substância deve ser evitada por seus efeitos nocivos aos seres humanos e ao meio ambiente. Outros líquidos empregados são óleo, água e álcool. A seleção de um líquido depende da faixa de pressão medida. Instrumentos desse tipo têm custo reduzido e são largamente empregados na área de medidas de pressão em tubulações de ventilação e de ar-condicionado. Às vezes, simples tubos de vidro ou mangueiras de plástico transparentes dotados de uma régua com escala são suficientes para se obterem boas leituras. Porém, para baixos valores de pressão, a coluna de líquido é normalmente inclinada em um ângulo α em relação à horizontal, a fim de melhorar a resolução de leitura de pequenas diferenças de altura manométrica (de alguns poucos milímetros de coluna de água).

Uma *atmosfera padrão* equivale a um desnível de 760 mm se o líquido for mercúrio (a 0 °C). Em outras unidades, ela vale:

1 atmosfera padrão = 760 mmHg (milímetros de coluna de mercúrio – a 0 °C)
= 29,92 inHg (polegadas de coluna de mercúrio – a 0 °C)
= 1,01325 × 10⁵ N/m² (newton por metro quadrado)
= 101,325 kPa (quilopascal)
= 1,01325 bar (bar)
= 14,696 lbf/in² ou psi (libra-força por polegada quadrada)
= 760 Torr (torricelli)

No sistema internacional, 1 bar vale 10⁵ N/m², sendo que a unidade N/m² recebe também o nome de pascal, ou, abreviadamente, Pa. Neste texto, será usado preferencialmente um múltiplo da unidade pascal, qual seja, o quilopascal, ou kPa (10³ N/m² = 1 kPa). Muitas vezes a unidade de pressão vem acompanhada da letra "a" ou "g". Por exemplo, *psia* ou *psig*, ou mesmo *bara* ou *barg*. Essas formas alternativas são muito empregadas na literatura inglesa para expressar a pressão absoluta (*absolute*) e a pressão manométrica (*gauge*).

Exemplo 1.1 Conversão de unidades

Um manômetro está instalado na linha do condensador de um ciclo de refrigeração. A leitura do instrumento indica 250 lbf/in², enquanto um termômetro registra a temperatura de 130 °F. A pressão atmosférica local vale 27,4 inHg, cujo valor foi obtido de um barômetro. Pede-se calcular:

- a) A pressão atmosférica em kPa.
- b) A pressão manométrica em kPa.
- c) A pressão absoluta em kPa.
- d) A temperatura em °C.

Solução

Usando as constantes de conversão indicadas, tem-se:

a)
$$P_{atm} = \frac{27.4}{29.92} \times 101,325 = 92.8 \text{ kPa}$$

b)
$$P_{atm} = \frac{250}{14.697} \times 101,325 = 1723,7 \text{ kPa} = 1,7237 \text{ MPa}$$

c)
$$P_{abs} = P_{atm} + P_{man} = 92.8 + 1723.7 = 1816.5 \text{ kPa} = 1.8165 \text{ MPa}$$

d)
$$T = \frac{5}{9} \times (130 - 32) \cong 54,4$$
 °C

No Apêndice A, que se encontra ao final deste livro, estão indicados diversos fatores de conversão de unidades.

Note que MPa (megapascal) é um múltiplo de pascal e vale 106 pascal ou 103 kPa.

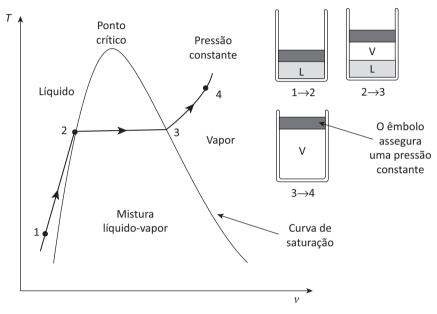
1.4 VOLUME ESPECÍFICO E DENSIDADE

O volume específico é a razão entre o volume, V, ocupado por uma dada substância e sua massa, m. A densidade é o inverso do volume específico. Às vezes, o que este texto chama de densidade em outros lugares é conhecido por massa específica. Entretanto, diante da grande difusão e do uso corrente do termo densidade, ele será adotado. Os símbolos gregos v e ρ são adotados para designar o volume específico e a densidade, nessa ordem. No sistema internacional, a unidade do volume específico é m^3/kg e a unidade da densidade é o recíproco, isto é, kg/m^3 . Daí, tem-se que

$$v = \frac{V}{m} = \frac{1}{\rho} \tag{1.6}$$

1.5 SUBSTÂNCIA PURA

Uma substância pura é definida como aquela que tem composição química invariável e homogênea. Essa noção é autoexplicativa, pois, por exemplo, quando se diz que uma determinada substância é formada por água, espera-se que se esteja referindo apenas à substância composta de moléculas de H_2O . No entanto, é amplamente sabido que, na forma em que a água se encontra para fins de utilização doméstica e industrial, diversos outros componentes químicos estão presentes, como sais minerais, gases dissolvidos e outros compostos químicos e, eventualmente, orgânicos. Para ser mais preciso, nas futuras citações da substância pura água, será subentendido que ela é constituída apenas das moléculas H_2O . Note que uma substância pura pode estar presente em uma de suas fases isoladamente ou em suas combinações.


O *ar atmosférico*, por sua vez, não é uma substância pura, pois ele é o resultado de uma mistura de vários gases, incluindo o vapor de água, e pode sofrer variações de composição de acordo com localização geográfica, estação do ano, poluição e outros fatores. Contudo, dentro das faixas usuais de temperatura e pressão com que se trabalha no campo da psicrometria, o ar atmosférico sem umidade (*ar seco*) exibe características de substância pura e a aproximação é válida.

1.6 PROPRIEDADES E TABELAS TERMODINÂMICAS DA ÁGUA

A água, como as demais substâncias puras, pode existir e coexistir nas três fases, sólida, líquida e vapor, ou em suas combinações, como mistura líquido-vapor. Uma projeção da região de equilíbrio entre as fases líquida e vapor está ilustrada no diagrama temperatura-volume específico da Figura 1.3. A fase líquida da água compreende o ramo esquerdo e toda a região à sua esquerda, enquanto no ramo direito da curva e para a direita a água encontra-se na fase vapor. Os dois ramos se encontram em um ponto singular chamado de *ponto crítico*, a partir do qual não se faz mais distinção entre fases. A região interna em formato de "sino" representa a região bifásica onde as fases líquida e vapor coexistem em equilíbrio térmico, mecânico e químico. Alguns estados notáveis estão assinalados e representam fisicamente os estados da água ilustrados nos esquemas cilindro-êmbolo que se encontram ao lado do diagrama.

A análise a seguir usará como referência o arranjo cilindro-êmbolo da Figura 1.3. Se a uma quantia de água, inicialmente em fase líquida e estado 1, for fornecido calor e a pressão for mantida constante (imposta pelo êmbolo), a massa de líquido vai se aquecer até que o estado 2 seja atingido. Ao estado 2 dá-se o nome de *líquido saturado*, e os demais estados do processo de aquecimento da água líquida à esquerda do estado 2 recebem o nome de *líquido comprimido* (como é o caso do estado inicial). Esse processo de aquecimento é ilustrado pelo arranjo cilindro-êmbolo 1→2. À medida que o fornecimento de calor continua, um processo de mudança de fase terá curso; trata-se da *vaporização*. Nesse processo de mudança de fase, ilustrado pelo pela mistura de líquido e vapor no arranjo cilindro-êmbolo 2→3, a temperatura da água vai parar de aumentar e estacionará em um valor que depende da pressão imposta. Enquanto houver

líquido no sistema, todo o calor fornecido será usado para vaporizá-lo, e nenhuma variação de temperatura será observada. Quando toda a massa de líquido vaporizar, o estado 3 terá sido atingido, o qual recebe o nome de *vapor saturado*. Qualquer adição futura de calor implicará um aquecimento do vapor e, por isso, o estado 4 é chamado de *vapor superaquecido*. No esquema cilindro-êmbolo, isso é mostrado pelo processo $3\rightarrow 4$, e apenas vapor existe dentro do arranjo.

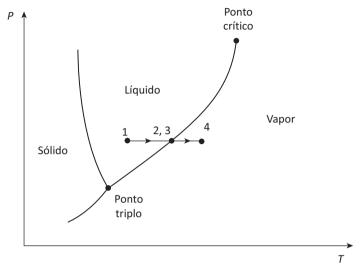


Figura 1.3 Diagrama temperatura-volume específico para a água. Os processos 1→4 estão ilustrados no esquema ao lado, e sua explicação encontra-se no texto.

Ainda com relação aos processos ilustrados na Figura 1.3, note que, durante todo o processo de aquecimento 1→4, a pressão permaneceu constante e, por isso, a curva ilustrada no diagrama, que passa pelos quatro pontos indicados, também é uma curva de pressão constante ou, simplesmente, uma *isobárica*. Uma linha horizontal nesse diagrama, que representa um processo de temperatura constante, é chamada de *isotérmica*, enquanto uma linha vertical é uma *isocórica* ou *isovolumétrica* e indica um processo de volume constante.

Não é demais ressaltar que, durante o processo de vaporização (2→3), a temperatura do sistema permanece inalterada e, mais importante, seu valor vai depender da pressão, para uma dada substância. Assim, existe uma relação funcional entre a pressão e a temperatura que recebe o nome de *curva de pressão de vapor*. A curva de pressão de vapor pode ser fornecida nas formas gráfica, analítica ou tabelada. A Tabela B.1 do Apêndice B indica a curva de pressão de vapor para a água para misturas líquido-vapor, tendo como dado de entrada a temperatura. Os mesmos dados são apresentados na Tabela B.2 no Apêndice B para a pressão como dado de entrada. A Figura 1.4 ilustra

a curva de pressão de vapor da água no diagrama pressão-temperatura e os casos estudados no sistema cilíndro-êmbolo da Figura 1.3. O *ponto triplo* também está indicado, bem como a região da fase sólida.

Figura 1.4 Diagrama pressão-temperatura da água incluindo as três fases. Os processos do arranjo cilindro-êmbolo da Figura 1.3 estão também indicados.

Exemplo 1.2 Estados termodinâmicos da água

Usando a tabela do Apêndice B, determine os estados (líquido, vapor ou mistura líquido-vapor) da água para as seguintes condições:

- a) T = 25 °C e P = 101,325 kPa (pressão normal).
- b) $T = 120 \,^{\circ}\text{C}$ e $P = 101,325 \,\text{kPa}$.
- c) T = 124 °C e P = 225 kPa.

Solução

- a) Da Tabela B.1 para T=25 °C, obtém-se $P_{sat}=3,169$ kPa. Como P=101,325 kPa > P_{sat} \Rightarrow estado líquido (*comprimido*).
- b) Da Tabela B.1 para T=120 °C, obtém-se $P_{sat}=195,53$ kPa. Como P=101,325 kPa < $P_{sat}\Rightarrow$ estado vapor (*superaquecido*).
- c) O valor de pressão de saturação não pode ser encontrado diretamente na Tabela B.1 para $T=124\,^{\circ}\text{C}$, mas pode ser obtido por interpolação entre $T_1=120\,^{\circ}\text{C}$ e $T_2=125\,^{\circ}\text{C}$, o que resulta em 225 kPa. Daí, pode-se afirmar que se trata de uma mistura de líquido e vapor.

1.7 AR ATMOSFÉRICO, AR SECO E AR ÚMIDO

Ar atmosférico, ou simplesmente ar, é o resultado de um grande número de constituintes gasosos, bem como vapor de água. Define-se ar seco como o ar atmosférico de cuja composição se exclui o vapor de água. Quando ocorre a mistura de ar seco e vapor de água tem-se o chamado ar úmido. Em conformidade com essa definição, o ar atmosférico que nos circunda é ar úmido. A composição do ar seco é relativamente constante, sofrendo pequenas variações em função de tempo, posição geográfica e altitude, além de contaminantes. Os componentes principais do ar seco estão indicados na Tabela 1.1, classificados de acordo com sua participação volumétrica, sendo dominantes os gases nitrogênio e oxigênio. A tabela também indica a massa molecular de cada gás.

Para efeito do estudo dos processos normalmente encontrados no campo da psicrometria, o ar seco é tratado como se se comportasse como um único gás, caracterizado por uma massa molecular média igual a 28,9645. Esse valor é resultado da ponderação volumétrica dos seus constituintes. Assim, para os estudos desenvolvidos neste livro, o ar úmido é formado pela mistura de dois gases: o vapor de água e o pseudogás chamado *ar seco*. Essa aproximação é válida em ampla faixa de temperatura, considerando que as condições ambientes estão bastante longe das propriedades críticas dos componentes do ar seco, o que faz com que essa mistura de gases seja como um único gás *não condensável*.

Constituinte	Volume (%)	Massa molecular (kg/kmol)
Nitrogênio	78,08	28,0134
Oxigênio	20,95	31,9988
Argônio	0,93	39,943
Dióxido de carbono	0,03	20,183
Outros gases	0,01	-

Tabela 1.1 Principais constituintes do ar seco

1.8 SISTEMA E VOLUME DE CONTROLE

Um sistema termodinâmico é definido como uma quantidade fixa de massa. Tudo externo ao sistema é o meio ambiente, e a região de separação entre o meio e o sistema é chamada de fronteira. Um conceito mais útil em análises de engenharia e equipamentos é o volume de controle, VC. O volume de controle é um volume hipotético ou real que engloba uma determinada região do espaço ou equipamento que nos interessa para conduzirmos uma determinada análise ou estudo. Normalmente, o volume de controle engloba uma máquina ou partes de uma instalação qualquer que são separadas

do meio por uma superfície que as envolve, chamada de *superfície de controle*, SC. O conceito de volume de controle será mais bem esclarecido quando as leis de conservação (Seções 1.16 e 1.17) forem estudadas.

1.9 EQUAÇÃO DE ESTADO - GÁS PERFEITO

Na seção introdutória deste capítulo, mostrou-se que existe uma relação funcional entre as propriedades de uma substância pura e o seu estado termodinâmico. Tal relação de estado pode ser obtida por meios experimentais ou analíticos e se encontra na forma de tabelas, gráficos ou equações. A análise é sobremodo facilitada quando se trabalha com equações, e as propriedades podem ser obtidas a partir de uma *equação de estado*. As equações de estado mais comuns são relações matemáticas que envolvem três propriedades, quais sejam, a pressão, a temperatura e o volume específico. São equações do tipo *P-v-T* e podem ser escritas de uma forma genérica como:

$$f(P, \nu, T) = 0 \tag{1.7}$$

Uma equação de estado pode ser apresentada de uma forma muito complexa (Seções 1.11, 1.12 e 2.17), contendo dezenas de coeficientes e termos. Contudo, uma característica comum é que todas elas tendem a um mesmo limite para valores baixos de pressão. Esse limite de baixa pressão é dado pela seguinte expressão elementar:

$$P v = RT, (1.8)$$

em que R é a constante particular do gás ou vapor em questão e se relaciona com a chamada *constante universal dos gases perfeitos*, \Re , por meio da seguinte relação:

$$R = \Re/M,\tag{1.9}$$

em que M é a massa molecular. Alguns valores de \Re são

 $\Re = 8,314 \text{ kJ/kgmol.K}$

= 1,987 kcal/kgmol.K

= 847,7 kgf.m/kgmol.K

A Eq. (1.8) é a chamada *lei dos gases ideais* ou *perfeitos*. Existe uma pequena diferença de conceitos¹ entre os termos gás ideal e gás perfeito, a qual não interessa para o propósito deste livro, e o último termo será usado preferencialmente. Todos os gases e vapores tendem ao comportamento de gás perfeito em baixas pressões, independentemente da sua temperatura. Uma regra prática para saber se o comportamento ideal

Gás ideal é aquele que obedece à Eq. (1.8). Gás perfeito é aquele que obedece a essa equação e possui calores específicos constantes.

é válido ou não numa dada situação consiste em comparar a pressão a que o gás está submetido com sua pressão crítica. Se a pressão for muito menor que sua pressão crítica, isto é, menor que cerca de 1% da pressão crítica, então é razoável o uso da Eq. (1.8). Outra situação em que o comportamento ideal ocorre se dá quando as temperaturas absolutas de trabalho giram em torno do dobro da temperatura crítica. É bastante afortunado o fato de tanto o ar seco como o vapor de água estarem em baixa pressão nas condições ambientes, permitindo o uso da equação dos gases perfeitos e possibilitando, assim, obter relações analíticas simplificadas dos parâmetros psicrométricos, que funcionam bastante bem. Isso será abordado no Capítulo 2. Uma equação de estado mais precisa que a dos gases perfeitos é discutida nas Seções 1.11 e 1.12.

1.10 MISTURA DE GASES PERFEITOS

A lei da mistura de gases perfeitos, observada por John Dalton, informa que a pressão total de uma mistura, P, é igual à soma das pressões, P_i , que cada i-ésimo gás que forma a mistura exerceria se ocupasse isoladamente o volume do reservatório, V, que contém a mistura e estivesse à temperatura, T, da mistura. Para a mistura de ar seco e vapor de água tem-se que

$$P = P_a + P_v, \tag{1.10}$$

em que os índices a e v indicam ar seco e vapor de água, respectivamente. O enunciado de Dalton é equivalente a dizer que um gás ou vapor se comporta independentemente da presença do outro. P_a é a chamada pressão parcial do ar seco, e P_v é a pressão parcial do vapor de água na mistura.

Exemplo 1.3 Mistura de gases perfeitos – Lei de Dalton para o ar úmido

Considere o ar úmido a uma pressão total de 101,325 kPa (pressão normal). O ar está a 40 °C e saturado de vapor de água, isto é, o ar possui a máxima quantidade de vapor em equilíbrio admissível a essa dada temperatura. Para tal situação, obtenha a pressão parcial do ar seco, P_a , e a do vapor de água, P_v , na mistura.

Solução

Sabendo-se que o ar úmido está saturado, então a pressão parcial do vapor de água é a própria pressão de saturação do vapor a 40 °C, cujo valor pode ser obtido da Tabela B.1 e vale $P_v = 7,384$ kPa. Fazendo uso da Eq. (1.10), pode-se facilmente obter a pressão parcial do ar seco, ou seja, $P_a = P - P_v = 101,325 - 7,384 = 93,941$ kPa.

1.11 FATOR DE COMPRESSIBILIDADE

Define-se o fator de compressibilidade, Z, de acordo com

$$Z = \frac{Pv}{RT}. ag{1.11}$$

Verifica-se que, em condições de baixa pressão (ou densidade), o fator de compressibilidade é uma função bem comportada do volume específico a uma dada temperatura, e a seguinte expansão em série pode ser obtida:

$$Z = \frac{Pv}{RT} = 1 + \frac{B}{v} + \frac{C}{v^2} + \frac{D}{v^3} + \dots$$
 (1.12)

Naturalmente, essa equação de estado é mais precisa que a equação dos gases perfeitos e traduz melhor o comportamento real do gás, considerando o número de coeficientes que podem ser ajustados. Ela recebe o nome de *expansão virial no volume específico* (pode-se também haver uma expansão virial em termos de pressão). As constantes B, C, D etc. são chamadas de *coeficientes viriais* e dependem exclusivamente da temperatura. Se os coeficientes viriais forem nulos, então o fator de compressibilidade será unitário e a equação dos gases perfeitos será restabelecida. Visto assim, o fator de compressibilidade pode servir de indicador do afastamento do vapor ou gás da condição idealizada, dado por Z=1.

A Figura 1.5 ilustra o comportamento do fator de compressibilidade do ar seco para diversas pressões em função da temperatura. A figura indica que, para pressões da ordem de 1 atmosfera na faixa de temperatura indicada, o fator de compressibilidade do ar seco permanece essencialmente unitário. Para tais situações, a equação simplificada dos gases perfeitos pode ser usada para prever as propriedades do ar seco com bastante sucesso e precisão. O outro componente importante do ar atmosférico é o vapor de água. Para essa substância, o comportamento do fator de compressibilidade já não é tão bom quanto o do ar seco para aquelas faixas de temperatura e pressão. Entretanto, em se tratando do vapor de água, não é necessário se preocupar com uma gama muito ampla de pressões, já que o vapor de água está presente no ar em quantidades bastante reduzidas para as condições usuais. Assim, sua influência sobre a pressão final do ar é diminuta, e ele exerce uma pequena pressão parcial na mistura. Mesmo assim, observa-se que o fator de compressibilidade do vapor de água saturado é maior que 0,995 para pressões de até 2 atmosferas, que é uma ampla faixa de pressões e suficiente para a maioria das aplicações envolvendo ar úmido em condições normais.

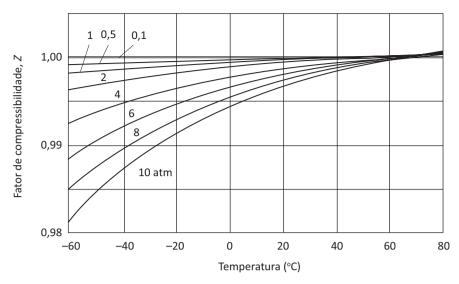


Figura 1.5 Fator de compressibilidade do ar seco para diversas pressões em função da temperatura.

1.12 MISTURA DE GASES REAIS

A lei de mistura de dois gases perfeitos apresentada na Seção 1.10 é a forma mais simples de estimar as propriedades da mistura de dois gases. Entretanto, em se desejando obter uma equação de estado mais realista para uma faixa maior de temperatura e pressão, deve-se utilizar, por exemplo, a equação de estado virial do fator de compressibilidade. Note que os coeficientes viriais do ar seco e do vapor de água devem ser conhecidos, além de outros termos viriais de interação molecular. A regra normalmente utilizada para o segundo coeficiente virial de uma mistura de dois gases é dada por

$$B_m = x_1^2 B_{11} + 2x_1 x_2 B_{12} + x_2^2 B_{22}, (1.13)$$

em que os índices 1 e 2 referem-se aos dois componentes da mistura; B_{11} e B_{22} são os dois segundos coeficientes viriais dos componentes isoladamente (obtidos de tabelas); B_{12} é o segundo coeficiente virial de interação cruzada; e x_1 e x_2 são as frações molares dos dois componentes (note que $x_1 + x_2 = 1$). O problema de uma abordagem mais realista para o ar úmido será retomado na Seção 2.17, no Capítulo 2.

1.13 ENERGIA INTERNA E ENTALPIA

A *energia interna*, *U*, é a forma de energia acumulada pela substância em virtude do movimento ou agitação molecular e das forças de interação moleculares. A *energia interna específica*, *u*, é definida como a energia interna de uma substância por unidade de massa. As unidades da energia interna e da energia interna específica no sistema internacional de unidades, SI, são J (joule) e J/kg (joule por quilograma), respectivamente.

A *entalpia*, *H*, é a propriedade que combina as propriedades energia interna, pressão e volume. Essa propriedade aparece em associação com análises que envolvem volume de controle e fluxos mássicos. Analogamente à energia interna, pode-se definir a *entalpia específica*, *h*, ou seja, a entalpia por unidade de massa da substância.² A definição da entalpia específica é dada por

$$h = u + Pv. (1.14)$$

A entalpia da mistura de dois gases perfeitos é simplesmente dada pela soma ponderada em massa das entalpias individuais de cada componente. Já no caso da mistura de gases reais, a entalpia da mistura é obtida de uma forma mais elaborada, que foge ao interesse deste livro. Contudo, o leitor mais interessado pode olhar o assunto sobre propriedades reduzidas em um livro-texto de termodinâmica química. As unidades de entalpia e entalpia específica no SI são J e J/kg, respectivamente.

1.14 TRABALHO E CALOR

O *trabalho*, *W*, é a forma de interação de energia que um sistema ou volume de controle realiza ou sofre em relação ao meio que o circunda e pode ser traduzido pela ação de uma força agindo sobre uma distância. A *potência*, *W*, é a taxa temporal na qual o trabalho é realizado.

Calor, Q, é a forma de energia que é transferida através da fronteira do sistema ou superfície do volume de controle para ou do meio ambiente em virtude, exclusivamente, de uma diferença de temperatura entre a fronteira ou superfície de controle e o meio ambiente. O *fluxo de calor*, Q, é a taxa temporal na qual o calor é transferido. A unidade de trabalho e calor é J no SI, enquanto a potência e o fluxo de calor recebem a unidade W (watts). Veja no Apêndice A outras unidades e seus respectivos fatores de conversão.

1.15 CALORES ESPECÍFICOS

O calor específico de uma substância é uma propriedade termodinâmica muito importante, que permite obter as demais propriedades térmicas como energia interna e entalpia. Distinguem-se, pelo menos, dois tipos de calores específicos. O calor específico a pressão constante, C_n , é dado por

$$C_{p} = \frac{\partial h}{\partial T} \bigg|_{p} \,. \tag{1.15}$$

No próximo capítulo, as propriedades específicas serão mais detalhadas. Nas análises realizadas em psicrometria, as propriedades específicas normalmente referem-se à massa de ar seco.

Já o calor específico a volume constante, C,, é dado por

$$C_{v} = \frac{\partial u}{\partial T} \bigg)_{v} . \tag{1.16}$$

Como se vê, as definições dos calores específicos envolvem derivadas parciais. Contudo, verifica-se que, para gases perfeitos, tanto a energia interna como a entalpia são funções exclusivas da temperatura. Nesse sentido, as derivadas parciais mencionadas transformam-se em derivadas comuns ou ordinárias. Dos dois calores específicos, o calor específico a pressão constante é o que mais interessa para as análises subsequentes. Verifica-se que normalmente o valor de C_p (e também C_p) permanece constante para uma razoável faixa de temperatura (para um gás perfeito, C_p e C_p são constantes por definição). Sob tais circunstâncias, a propriedade entalpia específica pode ser rapidamente calculada a partir da integração da Eq. (1.15), o que resulta em:

$$h = h_0 + C_p(T - T_0), (1.17)$$

em que o índice "0" indica uma condição de referência para a qual a propriedade é conhecida. Arbitrariamente, pode-se estabelecer que a entalpia h_0 vale 0 J/kg para $T_0=0$ °C e então obtém-se a bem conhecida forma $h=C_pT$, o que deve permanecer válido desde que não haja mudança de fase e que a temperatura seja dada em °C. Se uma substância mudar de fase durante um processo (como pode ocorrer com a água nos processos psicrométricos), então deve-se levar em consideração o valor correspondente da entalpia associada com o processo de condensação ou vaporização, conforme o caso. A unidade dos calores específicos no SI é J/kg °C. Fatores de conversão para outros sistemas de unidades podem ser obtidos no Apêndice A.

Para gases perfeitos existe uma relação muito útil entre os calores específicos e a constante do gás, dada por:

$$C_p - C_v = R. (1.18)$$

Exemplo 1.4 Calor específico

O calor específico de muitos gases pode ser aproximado por um polinômio para ampla faixa de temperatura. No caso do ar seco, uma simples regressão linear é suficiente. Para a faixa de temperaturas entre –40 e 150 °C, a seguinte expressão pode ser utilizada:

$$C_p = 3,196 \times 10^{-5} T + 1,006,$$

em que T é dada em °C, e C_p , em kJ/kg °C. Pede-se calcular o valor do calor específico do ar a T = 0 °C e a 50 °C.

Solução

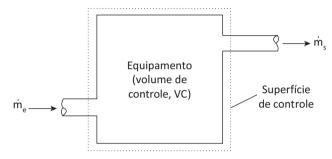
Para
$$T=0$$
 °C \Rightarrow $C_p=1,006$ kJ/kg °C, e para $T=50$ °C \Rightarrow $C_p=1,0076$ kJ/kg °C.

1.16 LEI DA CONSERVAÇÃO DE MASSA OU DA CONTINUIDADE

A maioria dos processos de interesse deste livro envolvem fluxos mássicos para dentro ou fora de um equipamento ou instalação, como fluxos de ar e água através de uma torre de resfriamento. Dessa forma, deve-se estabelecer um procedimento de análise para considerar e contabilizar tais fluxos de fluido. Considerando um volume de controle em torno do equipamento (Figura 1.6), a seguinte expressão do balanço de massa ou material pode ser escrita para um dado instante de tempo *t* e para uma dada substância ou espécie química (por exemplo, para a água ou para o ar seco). A formulação matemática do balanço material instantâneo representado pela Eq. (1.19) é dada por:

$$\begin{pmatrix}
\text{variação da massa} \\
\text{contida no volume} \\
\text{de controle}
\end{pmatrix}_{t} = \begin{pmatrix}
\text{soma dos fluxos de} \\
\text{massa que entram no} \\
\text{volume de controle}
\end{pmatrix}_{t} - \begin{pmatrix}
\text{soma dos fluxos de} \\
\text{massa que deixam o} \\
\text{volume de controle}
\end{pmatrix}_{t}. (1.19)$$

$$\left(\frac{dm}{dt}\right)_{VC} = \sum \dot{m}_e - \sum \dot{m}_s, \tag{1.20}$$

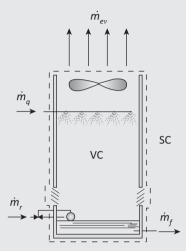

Esses valores são ligeiramente superiores aos reais em função de a regressão do exemplo cobrir uma ampla faixa de temperatura. Melhores valores são apresentados na Seção 2.7.

em que:

 $\left(\frac{dm}{dt}\right)_{VC}$ = variação instantânea da massa contida no VC;

 $\sum \dot{m}_e$ = somatória de todos os fluxos mássicos instantâneos que entram no VC; e

 $\sum \dot{m}_s$ = somatória de todos os fluxos mássicos instantâneos que deixam o VC.


Figura 1.6 Esquema de um volume de controle envolvendo um equipamento e os fluxos mássicos que o cruzam através da superfície de controle.

Uma importante simplificação pode ser feita quando a massa contida no volume de controle permanece inalterada com o tempo, o que significa que a sua derivada com o tempo é nula. Quando isso acontece, diz-se que o processo se encontra em regime permanente ou regime estacionário. Os processos analisados neste livro serão em regime permanente, a menos que seja especificado de outra forma. Com a hipótese de regime permanente, a formulação da Eq. (1.20) se reduz a

$$\sum \dot{m}_e = \sum \dot{m}_s. \tag{1.21}$$

Exemplo 1.5 Lei da conservação de massa

Numa determinada torre de resfriamento, água quente proveniente de um condensador deve ser resfriada a uma vazão mássica de 1.000 kg/h. Água de reposição é fornecida a uma taxa de 40 kg/h. Pede-se calcular a vazão mássica de água evaporada pela corrente de ar.

Figura E1.5 Esquema do volume de controle envolvendo a torre de resfriamento e os fluxos mássicos de água que cruzam a superfície de controle.

Solução

Este problema é uma simples aplicação da lei de conservação de massa em regime permanente (Eq. 1.21). Assim,

$$\sum \dot{m}_e = \sum \dot{m}_s$$
, ou

 $\dot{m}_q + \dot{m}_r = \dot{m}_{ev} + \dot{m}_f$, mas como $\dot{m}_q = \dot{m}_f \Rightarrow \dot{m}_{ev} = \dot{m}_r$

em que:

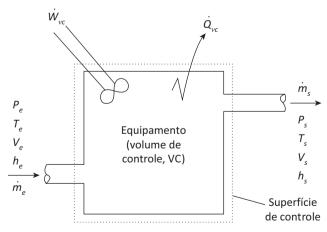
 m_{ev} = fluxo mássico de água evaporada;

 m_f = fluxo mássico de água fria;

 m_q = fluxo mássico de água quente; e

 m_r = fluxo mássico de água de reposição.

Evidentemente, o fluxo mássico de água evaporada é igual ao fluxo mássico da água de reposição (40 kg/h). Esse era um resultado previsível, já que esta é a função da água de reposição: repor a água evaporada. Embora elementar, o problema indica o método correto de resolver a questão.


1.17 LEI DA CONSERVAÇÃO DA ENERGIA

A lei da conservação da energia é também conhecida como primeira lei da termodinâmica. De forma análoga ao caso anterior, essa lei se preocupa em contabilizar um determinado balanço instantâneo, com a exceção de que agora não se trata de um balanço de massa, e sim de um balanço de energia. A lei estabelece que a energia não pode ser criada nem destruída, mas permanece constante. Formas de energia que interessam são energia interna, energia potencial gravitacional, energia cinética, calor e trabalho. Outras formas (energias elétrica e química, por exemplo) podem também ser incluídas no balanço, mas são desnecessárias para os fins deste livro. Refira-se a um texto básico de termodinâmica para ver uma análise mais abrangente, que inclua outras formas de energia. Utilizando um esquema de balanço semelhante ao de balanço de massa, a lei da conservação da energia, para o volume de controle da Figura 1.7, pode ser escrita como:

$$\begin{pmatrix} \text{variação da energia} \\ \text{total contida no} \\ \text{volume de controle} \\ \text{volume de controle} \\ \text{associada com os} \\ \text{fluxos mássicos} \end{pmatrix}_{t} - \begin{pmatrix} \text{energia que deixa o} \\ \text{volume de controle} \\ \text{associada com os} \\ \text{fluxos mássicos} \end{pmatrix}_{t}. (1.22)$$

O balanço instantâneo de energia expresso pela Eq. (1.22) é traduzido em termos matemáticos pela seguinte equação:

$$\left(\frac{dE}{dt}\right)_{VC} = \sum \dot{m}_e \left(h_e + \frac{V_e^2}{2} + Z_e\right) - \sum \dot{m}_s \left(h_s + \frac{V_s^2}{2} + Z_s\right) + \dot{Q} - \dot{W}.$$
(1.23)

Figura 1.7 Esquema de um volume de controle envolvendo um equipamento que ilustra os fluxos de energia associados com os fluxos mássicos e as interações de calor e trabalho com o meio.

A energia total, E, do volume de controle é a soma das formas de energias interna, cinética e potencial gravitacional. Os dois primeiros termos do lado direito representam os fluxos específicos de entalpia, h, energia cinética, $V^2/2$, e potencial gravitacional, Z, associados com cada fluxo mássico de entrada ou saída para o volume de controle, conforme o caso. \dot{Q} é o fluxo de calor que o volume de controle troca com o meio ambiente, e \dot{W} é a potência das forças que realizam trabalho na unidade de tempo sobre ou pelo volume de controle. Os sinais de \dot{Q} e \dot{W} decorrem da seguinte convenção: são positivos o fluxo de calor para o volume de controle e o trabalho realizado pelo volume de controle.

Para processos em *regime permanente*, o termo da derivada temporal da energia total é nulo, portanto, a Eq. (1.23) fica:

$$\sum \dot{m}_{e} \left(h_{e} + \frac{V_{e}^{2}}{2} + Z_{e} \right) + \dot{Q} = \sum \dot{m}_{s} \left(h_{s} + \frac{V_{s}^{2}}{2} + Z_{s} \right) + \dot{W}.$$
 (1.24)

Um caso particular da Eq. (1.24) ocorre quando existe somente um fluxo mássico através do equipamento. Da equação da conservação de massa, Eq. (1.21), tem-se que $\dot{m}_s = \dot{m}_s = \dot{m}$, e dividindo-se a Eq. (1.24) por \dot{m} , resulta que:

$$h_e + \frac{V_e^2}{2} + Z_e + q = h_s + \frac{V_s^2}{2} + Z_s + w \tag{1.25}$$

em que q e w são os fluxos de calor específico e trabalho específico, isto é, por unidade de massa, expressos em J/kg.

Exemplo 1.6 Conservação de energia em regime permanente – Exemplo 1

Refrigerante R 134a entra num condensador a 40 °C no estado de vapor saturado e a uma vazão de 25 kg/h. O fluido deixa o equipamento à mesma temperatura, porém no estado de líquido saturado, o que indica que houve uma completa condensação do vapor. Pede-se:

- a) Calcule o fluxo de calor trocado durante o processo de condensação.
- b) Sabendo que o calor perdido pelo fluido é retirado pelo ar que circula através do condensador do lado externo dos tubos, que a temperatura do ar na entrada vale 25 °C e que na saída vale 35 °C, determine o fluxo mássico de ar necessário para manter essas condições de operação.
- c) Calcule as vazões volumétricas de ar referentes às condições de entrada e de saída. São iguais? Comente sua resposta.

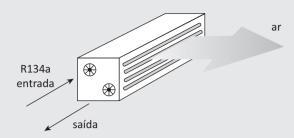


Figura E1.6a Ilustração de um condensador.

Fluido	Propriedade	Entrada	Saída
A	h (kJ/kg)	25	35
Ar	ν (m³/kg)	0,86	0,90
R 134a	h (kJ/kg)	419,6	256,4

Solução

Deve-se definir um volume de controle imaginário em torno dos tubos de refrigerante. Aplica-se a lei de conservação de energia para o refrigerante, observando que não há fluxo de trabalho e as energias cinética e potencial são desprezíveis. Assim, a Eq. (1.24) pode ser particularizada para o problema como

$$\dot{m}_{\scriptscriptstyle R} h_{\scriptscriptstyle e} + \dot{Q} = \dot{m}_{\scriptscriptstyle R} h_{\scriptscriptstyle s} \implies \dot{Q} = \dot{m}_{\scriptscriptstyle R} \left(h_{\scriptscriptstyle s} - h_{\scriptscriptstyle e} \right)$$

ou

$$\dot{Q} = \frac{25}{3600} (419,6 - 256,4) = -1,133 \text{ kW}$$

O sinal de menos (–) indica que o refrigerante perde calor (lembre-se da convenção de sinais adotada).

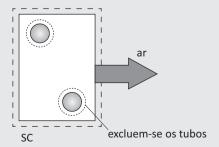


Figura E1.6b Volume de controle envolvendo o aparelho excluindo os tubos de refrigerante.

Agora, suponha um volume de controle envolvendo o aparelho que exclua os tubos de refrigerante, como na Figura E1.6b. Esse novo VC engloba apenas o fluxo de ar. Da lei de conservação de energia para esse VC, tem-se que, como o fluxo de calor recebido pelo ar é cedido pelo refrigerante com sinal trocado, então:

$$\dot{m}_a = \frac{1,133}{35-25} = 0,1133 \text{ kg/s} = 407,88 \text{ kg/h}.$$

A vazão volumétrica do ar, \dot{V}_a , é dada por $\dot{V}_a = \dot{m}v$. Assim, as vazões do ar são:

referente à condição de entrada: $\dot{V}_{ae} = 407,88 \times 0,86 = 350,78 \text{ m}^3/\text{h}$; e

referente à condição de saída: $\dot{V}_{as} = 407,88 \times 0,90 = 367,09 \text{ m}^3/\text{h}.$

Evidentemente, a vazão volumétrica em geral "não se conserva" ao longo do equipamento. Isso se deve ao fato de que o volume específico do ar depende da temperatura. Contudo, a vazão ou fluxo mássico do ar permanece constante e inalterada. Os autores sugerem que vazões mássicas sejam usadas preferencialmente às vazões volumétricas para designar as capacidades e as especificações dos equipamentos.

Exemplo 1.7 Conservação de energia em regime permanente – Exemplo 2

Num pequeno sistema de refrigeração operando com propano, R 290, o vapor entra a -10 °C e 180 kPa no compressor e deixa o equipamento a 80 °C e 900 kPa. Nessa situação, a vazão mássica do fluido refrigerante é de 0,009 kg/s, enquanto a potência total fornecida ao compressor é de 1,5 kW. Calcule a taxa de calor total perdido pelo compressor, bem como o calor perdido por unidade de massa (específico).

Entalpias do vapor de propano:

entrada: $h_1 = 471,7 \text{ kJ/kg}$; saída: $h_2 = 616,4 \text{ kJ/kg}$.

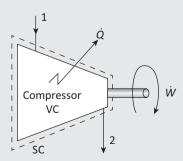


Figura E1.7 Ilustração do compressor.

Solução

Admitindo o volume de controle em torno do compressor, utiliza-se a Eq. (1.24), de forma que

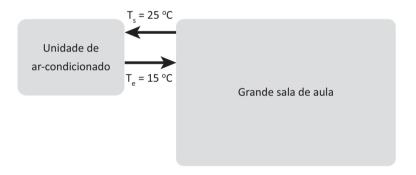
$$\dot{m}_1 h_1 + \dot{Q} = \dot{m}_2 h_2 + \dot{W}.$$

Agora, substituindo os valores conhecidos (tomando precauções com relação aos sinais), tem-se:

$$\dot{Q} = \dot{m}(h_2 - h_1) + \dot{W} = 0,009(616, 4 - 471, 7) - 1,5, \text{ ou}$$

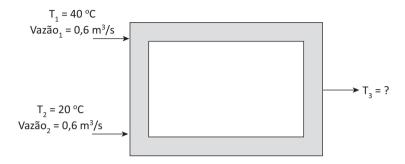
 $\dot{Q} = 0.198 \text{ kW}.$

Por unidade de massa, obtém-se:


$$q = \frac{\dot{Q}}{\dot{m}} = -\frac{0.198}{0.009} = -22.0 \text{ kJ/kg}.$$

Na solução deste problema, ficou implícita a lei da conservação de massa. O sinal negativo de calor e trabalho decorre da convenção adotada.

PROBLEMAS PROPOSTOS


- 1. Usando as tabelas de vapor, determine os estados (líquido, sólido, vapor ou mistura líquido-vapor ou sólido-vapor) da água para as seguintes condições:
- a) T = 25 °C e P = 14.7 lbf/in².
- b) $T = 40 \, ^{\circ}\text{C} \text{ e P} = 1.1 \text{ bar.}$
- c) T = 15 °C e P = 0.9 kPa.
- d) T = 40 °C e P = 1,2 MPa.
- 2. A pressão absoluta de um tanque fechado vale 110 kPa. Usando-se um manômetro para medir a pressão, qual seria o valor de leitura se a medição ocorresse no litoral (pressão normal de 760 mmHg)? E se fosse em São Paulo (700 mmHg)?
- 3. É comum ouvir dizer que a "água ferve a 100 °C", o que do ponto de vista termodinâmico é apenas parcialmente correto. A frase correta seria dizer que a água entra em ebulição a 100 °C na pressão de 1 atm. Se a pressão da água for superior a 1 atm, a temperatura de ebulição também será superior a 100 °C e, evidentemente, se a pressão for inferior à pressão atmosférica normal (1 atm), a temperatura de ebulição da água também será menor. Então, pergunta-se: qual a temperatura de "fervura" (ebulição) da água no interior de uma panela de pressão cuja pressão absoluta é de 2 atm?

- 4. Qual a massa de ar contida numa sala de 6 m \times 10 m \times 4 m se a pressão e a temperatura forem iguais a 100 kPa e 25 °C, respectivamente? Admita que o ar se comporta como um gás perfeito.
- 5. O ar confinado num pneu está inicialmente a –10 °C e 190 kPa. Após o automóvel percorrer um determinado percurso, a temperatura do ar foi novamente medida e revelou um valor de 10 °C. Calcule a pressão do ar nessa condição. Detalhe as hipóteses necessárias para a solução do problema.
- 6. Considere uma grande sala de aula em pleno verão a pressão normal do ar com 150 alunos, cada um dissipando 60 W de taxa de calor sensível (só aquecimento, sem evaporação da água veja a Seção 3.4). Todas as luzes, com 6,0 kW de potência nominal total, são mantidas acesas. A sala não tem paredes externas, e admite-se que o ganho de calor através das paredes e do teto seja desprezível. Ar-condicionado está disponível a 15 °C, e a temperatura do ar de retorno não deve exceder 25 °C. Determine o fluxo de massa de ar, em kg/s, que precisa ser fornecido para a sala a fim de manter constante sua temperatura média. Qual a vazão volumétrica de ar nas condições de insuflamento?

- 7. Uma turbina é alimentada com 2 kg/s de água a 1 MPa, 350 °C e com velocidade de 15 m/s. O vapor é descarregado da turbina saturado a 100 kPa. A velocidade na seção de descarga é pequena. Determine o trabalho específico e a potência de eixo gerados pela turbina. Pode-se desprezar a energia cinética?
- 8. Um trocador de calor recebe ar exterior a 32 °C e 100 kPa. A mistura de ar-vapor de água é resfriada até a temperatura de 12 °C para uma vazão da mistura de 0,4 m³/min. Qual a taxa de calor retirada pelo trocador de calor?

9. Duas correntes de ar são misturadas em um tanque isolado, conforme mostra a figura abaixo. Nessas condições, determine a temperatura, as vazões mássica e volumétrica de saída da mistura. Admita as propriedades do ar seco a pressão atmosférica normal.

- 10. Para o resfriamento de componentes eletrônicos é utilizado um fluxo de ar sobre eles insuflado a 20 °C e com uma vazão de 0,1 m³/s. Sabendo que se transfere uma taxa de calor de 300 W para o fluxo de ar, qual é a temperatura de saída do ar? A pressão é normal.
- 11. Um aquecedor elétrico industrial fornece 500 kW de potência térmica para um fluxo de água cuja temperatura de entrada é 25 °C com uma vazão mássica de 5 kg/s. Nessas condições, qual é a temperatura de saída da água?
- 12. O aquecedor do exemplo anterior é agora empregado para aquecer ar atmosférico às mesmas vazão mássica de 5 kg/s e temperatura de 25 °C. Nessas condições, qual é a temperatura de saída do ar? E se as mesmas condições forem mantidas, exceto pelo fato de que agora o fluido é óleo lubrificante (dado o calor específico $C_p = 1,67$ kJ/kg °C)?


Este livro apresenta clara e sequencialmente os conceitos de psicrometria, sempre ilustrando a teoria com exemplos de aplicação. Foi concebido tendo em mente profissionais e pesquisadores que atuam nas áreas de refrigeração e ar-condicionado (RAC), mas o abrangente conteúdo apresentado cobre outras áreas nas quais processos associados à manipulação do ar úmido são relevantes.

O assunto abordado neste livro é a base de qualquer estudo em que há mistura de ar seco e vapor de água e é útil não só para o projetista de sistemas de RAC, mas também para leitores com preocupações mais avançadas, pois também aborda o método de calcular as propriedades do ar com o emprego de uma equação de estado realista, disponibilizando ferramentas de análise avançadas para estudos de ar úmido comprimido, por exemplo. Além disso, todo o procedimento de construção do diagrama psicrométrico é apresentado passo a passo. Os processos evaporativos e de condensação que ocorrem em equipamentos de manipulação de ar úmido também são analisados, fornecendo técnicas e procedimentos para a análise desses equipamentos, como torres de resfriamento, umidificadores, secadores de ar, entre outros.

Os dois primeiros capítulos são uma revisão básica de termodinâmica e dos parâmetros psicrométricos. O terceiro capítulo apresenta, passo a passo, o método de construção e uso do diagrama psicrométrico de Mollier; no quarto capítulo, o foco está em aplicações para sistemas de climatização; e, no quinto, são apresentados conceitos e aplicações da transferência simultânea de calor e massa em ar úmido. O sexto capítulo, por sua vez, analisa os equipamentos evaporativos (torres de resfriamento, condensadores evaporativos e resfriadores evaporativos), e o sétimo é voltado para a instrumentação associada à medição dos parâmetros psicrométricos. Finalmente, o oitavo capítulo apresenta tópicos especiais da psicrometria, como a obtenção da temperatura de orvalho de outras misturas gasosas, como as resultantes de processos de combustão.

Clique aqui e:

VEJA NA LOJA

Fundamentos e Aplicações da Psicrometria

Alberto Hernandez Neto , José Roberto Simões-Moreira

ISBN: 9788521218395

Páginas: 280

Formato: 17 x 24 cm

Ano de Publicação: 2019

Peso: 0.000 kg