1 — INTRODUÇÃO

1.1 – ESTADO DE EQUILÍBRIO PLÁSTICO EM SOLOS

O equilíbrio plástico que age em um elemento do solo é mostrado na Figura 1.

Figura 1

Na Figura 1, AB representa a superfície horizontal de uma massa semi-infinita de areia sem coesão e de peso específico $\gamma \in E$ representa um elemetno de areia de altura z e com área unitária.

A tensão normal na base na altura z vale $\sigma v = \gamma z$ e é uma tensão principal. As tensões σh perpendiculares a σv são também principais e existe uma relação entre σv e σh dada por

$$K = \frac{\sigma h}{\sigma v}$$

O valor K, de acordo com os ensaios de compressão triaxial, pode assumir qualquer valor entre os limites $Ka \in Kp$, sendo:

$$Ka = tg^2 \left(45^\circ - \frac{\phi}{2} \right)$$
 e $Kp = tg^2 \left(45^\circ + \frac{\phi}{2} \right)$

onde ϕ = ângulo de atrito interno da areia.

Quando uma massa de solo é depositada por um processo natural ou artificial, o valor K tem um valor Ko intermediário entre $Ka \in Kp$, onde Ko é uma constante empírica denominada de coeficiente de empuxo de terras em repouso. Seu valor depende do grau de compacidade da areia e do processo, pelo qual o depósito foi feito. Quando a compactação for por apiloamento manual, o valor de Ko varia entre 0,4 para areia fofa e 0,5 para areia compacta.

Caso a compactação seja feita por camadas, o valor Ko pode aumentar até cerca de 0,8. Para alterarmos o valor de Ko de uma massa de areia para o valor Ka, é necessário lhe darmos a possibilidade de se expandir na direção horizontal.

Figura 2

Quando a massa de areia que está inicialmente no estado de repouso — seção vertical ab, move-se de uma distância d_1 , afastando-se do aterro, para a_1b_1 ; o coeficiente de empuxo em repouso Ko passa para o coeficiente de empuxo ativo Ka.

Valores de translação para mobilizar	o coeficiente de empuxo ativo
Tipo de solo	Valores de d 1
Solo sem coesão — compacto (areias)	0,1% <i>H</i> a 0,2% <i>H</i>
Solo sem coesão — fofo (areias)	0,2% H a 0,4% H
Solo coesivo rijo (argilas)	1% H a 2% H
Solo coesivo mole (argilas)	2% H a 5% H

Figura 3

Para um muro de arrimo de H = 5 m, se o solo for sem coesão, $d_1 = 0,1\%$ 500 = 0,5 cm = 5 mm. O coeficiente de empuxo de repouso Ko, após esta translação, mobiliza o coeficiente de empuxo ativo Ka.

Quando a massa de areia que está incialmente no estado de repouso — seção vertical ab, move-se de uma distância D_1 , contra o reaterro, para a_2b_2 . O coeficiente de empuxo em repouso Ko, após esta translação, mobiliza o coeficiente de empuxo passivo Kp (Fig. 4).

Figura 4

1.2 – EMPUXOS DE TERRA EM MUROS DE CONTENÇÃO — RANKINE

Quando construímos um muro de arrimo e depois vamos depositar o aterro, enquanto o aterro está sendo colocado, o muro sofre algum deslocamento sob o empuxo. Se a posição do muro é fixa, o empuxo de terras conservará um valor próximo ao do empuxo das terras em repouso. Porém, logo que o muro começa a transladar, o solo se deforma com a massa de solo adjacente, do estado de repouso para o estado ativo de equilíbrio plástico.

Deste modo, se um muro de arrimo pode suportar o empuxo ativo das terras, ele não rompe. Embora a face interna dos muros de arrimo seja áspera, Rankine supôs que fossem lisas na elaboração de sua hipótese.

$$zc = \frac{2C}{\gamma\sqrt{KA}}$$

	TABELA	1.2.A —	Coeficie	nte de e	mpuxo a	tivo <i>Ka</i> (Rankine)	
ρ				Q	þ			
Р	10	12	15	18	20	22	24	26
0	0,7041	0,6558	0,5888	0,5279	0,4903	0,4555	0,4217	0,3905
5	0,7352	0,6788	0,6046	0,5392	0,4996	0,4627	0,4282	0,3959
10	0,9848	0,7799	0,6636	0,5789	0,5312	0,4883	0,4492	0,4134
15	0	0	0,9659	0,6785	0,6028	0,5429	0,4923	0,4480
20	0	0	0	0	0,9397	0,6768	0,5830	0,5152
25	0	0	0	0	0	0	0	0,6999
30	0	0	0	0	0	0	0	0
35	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0
			[[
β	28	30	32	34	36	38	40	42
0	0,3610	0,3333	0,3073	0,2827	0,2596	0,2379	0,2147	0,1982
5	0,3656	0,3372	0,3105	0,2855	0,2620	0,2399	0,2192	0,1997
10	0,3802	0,3495	0,3210	0,2944	0,2696	0,2464	0,2247	0,2044
15	0,4086	0,3730	0,3405	0,3106	0,2834	0,2581	0,2346	0,2129
20	0,4605	0,4142	0,3739	0,3381	0,3060	0,2769	0,2504	0,2262
25	0,5727	0,4936	0,4336	0,3847	0,3431	0,3070	0,2750	0,2465
30	0	0,8660	0,5741	0,4776	0,4105	0,3582	0,3151	0,2784
35	0	0	0	0	0,5971	0,4677	0,3906	0,3340
40	0	0	0	0	0	0	0,7660	0,4668

	TABELA	1.2.B —	Coeficie	nte de e	mpuxo a	tivo Kp (Rankine)	
ρ				Q	þ			
р	10	12	15	18	20	22	24	26
0	1,4203	1,5250	1,6984	1,8944	2,0396	2,1980	2,3712	2,5611
5	1,3499	1,4620	1,6415	1,8404	1,9864	2,1450	2,3179	2,5070
10	0,9848	1,2435	1,4616	1,6752	1,8257	1,9862	2,1589	2,3463
15	0	0	0,9659	1,3751	1,5478	1,7186	1,8954	2,0826
20	0	0	0	0	0,9397	1,3047	1,5146	1,7141
25	0	0	0	0	0	0	0	1,1736
30	0	0	0	0	0	0	0	0
35	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0
β	28	30	32	34	36	38	40	42
0	2,7698	3,0000	3,2546	3,5371	3,8518	4,2037	4,5989	5,0447
5	2,7145	2,9431	3,1957	3,4757	3,7875	4,1360	4,5272	4,9684
10	1,5507	2,7748	3,0216	3,2946	3,5979	3,9365	4,3161	4,7437
15	2,2836	2,5017	2,7401	3,0024	3,2925	3,6154	3,9766	4,3827
20	1,9175	2,1318	2,3618	2,6116	2,8857	3,1888	3,5262	3,9044
25	1,4343	1,6641	1,8942	2,1352	2,3938	2,6758	2,9867	3,3328
30	0	0,8660	1,3064	1,5705	1,8269	2,0937	2,3802	2,6940
35	0	0	0	0	1,1238	1,4347	1,7177	2,0088
40	0	0	0	0	0	0	0,7660	1,2570

Exemplo 1.2.A

Figura 6

Da Tabela 1.2. A temos: Ka = 0,3495 e (B) Kp = 2,7748.

 $p_A = Ka \cdot \gamma \cdot H = 0,395 \cdot 18 \cdot 5 = 31,45 \text{ kN/m}^2.$

Exemplo 1.2.B

O mesmo exemplo anterior com solo: $C = 10 \text{ kN/m}^2$ (coesão)

$$\begin{split} p_A &= KA \cdot \gamma \cdot H - 2 \cdot C \cdot \sqrt{KA} \\ p_A &= 0,3495 \times 18 \times 5 - 2 \times 10 \times \sqrt{0,3495} = 19,63 \text{ kN/m}^2 \\ p_B &= -2C\sqrt{KA} = -2 \times 10 \times \sqrt{0,3495} = -11,82 \text{ kN/m}^2 \\ &zc = \frac{2C}{\gamma \sqrt{Ka}} \\ &zc = \frac{2 \times 10}{18 \times \sqrt{0,3495}} = 1,88 \text{ m} \end{split}$$

1.3 – EMPUXOS DE TERRA EM MUROS DE CONTENÇÃO — COULOMB

As hipóteses para o cálculo do empuxo de terra são as seguintes:

- a) Solo isotrópico e homogêneo que possui atrito interno e coesão.
- b) A superfície de ruptura é uma superfície plana, o que não é verdadeiro, mas simplifica os cálculos.
- c) As forças de atrito são distribuídas uniformemente ao longo do plano de ruptura e vale $f = tg \phi$ (f = coeficiente de atrito).
- d) A cunha de ruptura é um corpo rígido.
- e) Existe atrito entre o terreno e a parede do muro.
- f) Ruptura é um problema em duas dimensões.

Figura 8

$$Ka = \frac{\operatorname{sen}^{2}(\alpha + \phi)}{\operatorname{sen}^{2}\alpha \cdot \operatorname{sen}(\alpha - \delta) \cdot \left[1 + \sqrt{\frac{\operatorname{sen}(\phi + \delta) \cdot \operatorname{sen}(\phi - \beta)}{\operatorname{sen}(\alpha - \delta) \cdot \operatorname{sen}(\alpha + \beta)}}\right]^{2}}$$

$$Kp = \frac{\operatorname{sen}^{2}(\alpha - \phi)}{\operatorname{sen}^{2}\alpha \cdot \operatorname{sen}(\alpha + \delta) \cdot \left[1 - \sqrt{\frac{\operatorname{sen}(\phi + \delta) \cdot \operatorname{sen}(\phi + \beta)}{\operatorname{sen}(\alpha + \delta) \cdot \operatorname{sen}(\alpha + \beta)}}\right]^{2}}$$

$$p_{A} = Ka \cdot \gamma \cdot H - 2 \cdot C \cdot \sqrt{KA} \quad (\text{ativo})$$

$$p_{p} = Kp \cdot \gamma \cdot H + 2 \cdot C \cdot \sqrt{KP} \quad (\text{passivo})$$

$$zc = \frac{2C}{\gamma \sqrt{Ka}}$$

TABI	ELA 1.3.A —	Coeficiente c	le empuxo at	tivo <i>Ka</i> (Coulo	omb)
		$\alpha = 90^{\circ}$	e $\beta = 0^{\circ}$		
, h			δ		
Ψ	0	16	17	20	22
10	0,7041	0,6145	0,6122	0,6070	0,6049
12	0,6558	0,5724	0,5702	0,5650	0,5628
15	0,5888	0,5153	0,5133	0,5084	0,5062
18	0,5279	0,4640	0,4622	0,4578	0,4559
20	0,4903	0,4325	0,4309	0,4269	0,4251
22	0,4550	0,4029	0,4014	0,3978	0,3962
24	0,4217	0,3750	0,3737	0,3705	0,3690
26	0,3905	0,3487	0,3475	0,3447	0,3434
28	0,3610	0,3239	0,3228	0,3203	0,3193
30	0,3333	0,3004	0,2994	0,2973	0,2964
32	0,3073	0,2782	0,2773	0,2755	0,2748
34	0,2827	0,2571	0,2564	0,2549	0,2544
36	0,2596	0,2372	0,2366	0,2354	0,2350
38	0,2379	0,2184	0,2179	0,2169	0,2166
40	0,2174	0,2006	0,2002	0,1994	0,1992
42	0,1982	0,1837	0,1834	0,1828	0,1827

TABELA 1	.3.A — Coef	iciente de em	ipuxo ativo <i>K</i>	(Coulomb)	(continuação)
		$\alpha = 90^{\circ}$	e β = 5°		
L			δ		
φ	0	16	17	20	22
10	0,7687	0,7009	0,6998	0,6983	0,6986
12	0,7117	0,6427	0,6413	0,6386	0,6382
15	0,6347	0,5694	0,5678	0,5645	0,5635
18	0,5660	0,5069	0,5054	0,5021	0,5008
20	0,5240	0,4696	0,4682	0,4650	0,4638
22	0,4848	0,4352	0,4338	0,4309	0,4297
24	0,4482	0,4032	0,4019	0,3992	0,3982
26	0,4139	0,3733	0,3722	0,3698	0,3688
28	0,3817	0,3454	0,3444	0,3422	0,3414
30	0,3516	0,3192	0,3183	0,3165	0,3158
32	0,3233	0,2946	0,2939	0,2923	0,2917
34	0,2968	0,2715	0,2709	0,2695	0,2691
36	0,2720	0,2498	0,2492	0,2481	0,2478
38	0,2487	0,2293	0,2289	0,2280	0,2278
40	0,2269	0,2101	0,2097	0,2090	0,2089
42	0,2064	0,1920	0,1917	0,1912	0,1911

TABELA	1.3.A — Coef	iciente de en	npuxo ativo <i>k</i>	(Coulomb)	(continuação)
		$\alpha = 90^{\circ}$	e β = 10°		
4			δ		
φ	0	16	17	20	22
10	0,9698	1,0089	1,0142	1,0321	1,0460
12	0,8115	0,7773	0,7780	0,7816	0,7855
15	0,7038	0,6545	0,6539	0,6537	0,6548
18	0,6188	0,5683	0,5674	0,5658	0,5659
20	0,5692	0,5206	0,5196	0,5177	0,5174
22	0,5237	0,4781	0,4770	0,4750	0,4746
24	0,4818	0,4396	0,4386	0,4367	0,4362
26	0,4431	0,4045	0,4036	0,4017	0,4012
28	0,4071	0,3722	0,3713	0,3696	0,3692
30	0,3737	0,3423	0,3415	0,3400	0,3396
32	0,3425	0,3145	0,3139	0,3126	0,3122
34	0,3135	0,2887	0,2881	0,2870	0,2868
36	0,2865	0,2646	0,2641	0,2632	0,2631
38	0,2612	0,2421	0,2417	0,2410	0,2409
40	0,2377	0,2211	0,2202	0,2202	0,2202
42	0,2157	0,2014	0,2011	0,2007	0,2008

TAB	ELA 1.3.A —	Coeficiente c	le empuxo at	ivo Kp (Coul	omb)
		$\alpha = 90^{\circ}$	e $\beta = 0^{\circ}$		
			δ		
φ	0	16	17	20	22
10	1,4203	1,9539	1,9956	2,1304	2,2295
12	1,5250	2,1441	2,1936	2,3546	2,4736
15	1,6984	2,4641	2,5276	2,7349	2,8895
18	1,8944	2,8360	2,9164	3,1815	3,3811
20	2,0396	3,1191	3,2132	3,5250	3,7615
22	2,1980	3,4359	3,5461	3,9130	4,1933
24	2,3712	3,7922	3,9212	4,3536	4,6865
26	2,5611	4,1947	4,3462	4,8670	5,2534
28	2,7698	4,6520	4,8303	5,4356	5,9096
30	3,0000	5,1744	5.3850	6,1054	6,6748
32	3,2546	5,7748	6,0247	6,8861	7,5743
34	3,5371	6,4694	6,7674	7,8037	8,6410
36	3,8518	7,2788	7,6364	8,8916	9,9187
38	4,2037	8,2295	8,6615	10,1943	11,4663
40	4,5989	9,3560	9,8823	11,7715	13,3644
42	5,0447	10,7040	11,3512	13,7052	15,7261

TABELA	1.3.A — Coef	iciente de em	ipuxo ativo <i>K</i>	p (Coulomb)	(continuação)
		$\alpha = 90^{\circ}$	e $\beta = 5^{\circ}$		
1			δ		
φ	0	16	17	20	22
10	1,5635	2,3460	2,4092	2,6154	2,7687
12	1,6875	2,5776	2,6515	2,8937	3,0751
15	1,8938	2,9759	3,0690	3,3771	3,6105
18	2,1287	3,4489	3,5665	3,9592	4,2599
20	2,3039	3,8153	3,9531	4,4158	4,7732
22	2,4964	4,2312	4,3929	4,9399	5,3661
24	2,7085	4,7056	4,8961	5,5452	6,0558
26	2,9429	5,2499	5,4753	6,2492	6,8642
28	3,2027	5,8783	6,1463	7,0742	7,8197
30	3,4918	6,6087	6,9292	8,0491	8,9597
32	3,8147	7,4641	7,8500	9,2117	10,3341
34	4,1769	8,4742	8,9423	10,6129	12,0106
36	4,5848	9,6781	10,2510	12,3215	14,0833
38	5,0465	11,1279	11,8363	14,4330	16,6854
40	5,5717	12,8945	13,7809	17,0828	20,0111
42	6,1727	15,0761	16,2006	20,4683	24,3518

TABELA 1.3.A — Coeficiente de empux	ko ativo Kp	(Coulomb)	(continuação
-------------------------------------	-------------	-----------	--------------

TABELA 1	.3.A — Coefi	iciente de em	puxo ativo K	(Coulomb)	(continuação)
		$\alpha = 90^{\circ}$	$\beta = 10^{\circ}$		
L			δ		
φ	0	16	17	20	22
10	1,7040	2,7837	2,8748	3,1752	3,4023
13	1,8519	3,0745	3,1805	3,5328	3,8012
15	2,0989	3,5828	3,7167	4,1659	4,5125
18	2,3823	4,1989	4,3691	4,9463	5,3980
20	2,5954	4,6847	4,8854	5,5715	6,1137
22	2,8313	5,2445	5,4824	6,3023	6,9572
24	3,0933	5,8938	6,1773	7,1632	7,9599
26	3,3854	6,6522	6,9922	8,1862	9,1637
28	3,7125	7,5449	7,9557	9,4139	10,6248
30	4,0804	8,6049	9,1055	10,9034	12,4206
32	4,4959	9,8761	10,4918	12,7334	14,6595
34	4,9678	11,4171	12,1831	15,0140	17,4973
36	5,5066	13,3089	14,2741	17,9035	21,1643
38	6,1253	15,6647	16,8992	21,6360	26,0127
40	6,8405	18,6472	20,2543	26,5688	32,6018
42	7,6732	22,4968	24,6332	33,2702	41,8640

Exemplo 1.3.A

Figura 9

Da Tabela 1.3 temos:

$$Ka = 0,34$$

$$P_A = Ka \cdot \gamma \cdot H - 2 \cdot C \cdot \sqrt{Ka}$$

$$P_A = 0,34 \times 18 \times 5 - 2 \times 0 \sqrt{0,34} = 30,6 \text{ kN/m}^2$$

$$P_B = 0$$

Exemplo 1.3.B

Figura 10

O mesmo exemplo (1.2.A) com solo contendo $c = 10 \text{ kN/m}^2$ (coesão) $\delta = 20^{\circ}$

$$\begin{split} p_A &= Ka \cdot \gamma \cdot H - 2 \cdot C \cdot \sqrt{Ka} = 0,34 \times 20 \times 5 - 2 \times 10 \times \sqrt{0,34} = 18,94 \text{ kN/m}^2 \\ p_B &= -2 \cdot C \cdot \sqrt{Ka} = -2 \cdot 10 \cdot \sqrt{0,34} = -11,66 \text{ kN/m}^2 \\ zc &= \frac{2 \cdot C}{\gamma \cdot \sqrt{Ka}} = \frac{2 \times 10}{18 \times \sqrt{0,34}} \cong 1,91 \text{ m} \end{split}$$

1.4 – EMPUXOS DE TERRA EM REPOUSO EM MUROS DE CONTENÇÃO

O cálculo do coeficiente de empuxo em repouso (K_0) que deverá ser utilizado na determinação do empuxo em estruturas de gravidade, que não devam se deslocar, foi estudado por vários autores, mas aqui, iremos apresentar apenas as equações segundo Myslèvec (1972) e segundo Jaky.

Figura 11

O ângulo ϕ_0 é chamado de ângulo de atrito estático do solo. Este ângulo de atrito estático (ϕ_0) é menor que o ângulo de atrito do solo na ruptura (ϕ), pois no empuxo em repouso, somente parte da resistência ao cisalhamento (τ) é mobilizada. Também C_0 é menor que a coesão mobilizada (C), pois no repouso somente parte da resistência ao cisalhamento é mobilizada. O valor de ϕ_0 será determinado utilizando-se a seguinte equação:

$$\operatorname{sen} \phi_0 = \frac{\operatorname{sen} \phi}{2 - \operatorname{sen} \phi},$$

onde ϕ é o ângulo de atrito interno do solo na ruptura.

O valor de C_0 será determinado utilizando-se a seguinte equação:

$$\begin{split} C_0 &= C \cdot \frac{\operatorname{tg} \phi_0}{\operatorname{tg} \phi} \quad \text{(coesão estática do solo)} \\ \sigma h &= \sigma v \cdot Ka \ \phi_0 - 2 \cdot C_0 \cdot \sqrt{Ka \ \phi_0} \\ Ka \ \phi_0 &= \operatorname{tg}^2 \left(45 - \frac{\phi_0}{2} \right) = 1 - \operatorname{sen} \phi \quad \left(\begin{array}{c} \operatorname{coeficiente de empuxo} \\ \operatorname{em repouso ativo} \end{array} \right) \end{split}$$

onde σh é pressão horizontal; σv : pressão vertical; $Ka \phi_0$: coeficiente de empuxo no estado repouso-ativo.

Tabela 1	.4 — Valores do	os coeficientes r	no estado repou	ıso-ativo
ϕ	$sen(\phi_0)$	ϕ_{0}	$oldsymbol{K}$ a ϕ_0	$tg(\phi_0)/tg(\phi)$
5	0,0456	2,6115	0,9128	0,5213
8	0,0748	4,2892	0,8608	0,5337
10	0,0951	5,4559	0,8264	0,5417
12	0,1160	6,6623	0,7921	0,5495
15	0,1486	8,5485	0,7412	0,5610
18	0,1827	10,5296	0,6910	0,5721
20	0,2063	11,9049	0,6580	0,5792
22	0,2305	13,3248	0,6254	0,5862
25	0,2679	15,5408	0,5774	0,5964
28	0,3067	17,8628	0,5305	0,6061
30	0,3333	19,4712	0,5000	0,6124
32	0,3605	21,1291	0,4701	0,6185
34	0,3881	22,8370	0,4408	0,6243
36	0,4162	24,5959	0,4122	0,6300
38	0,4447	26,4063	0,3843	0,6355
40	0,4736	28,2688	0,3572	0,6409
42	0,5028	30,1839	0,3309	0,6460
45	0,5469	33,1559	0,2929	0,6533

Exemplo 1.4.A

Calcular os empuxos no muro de gravidade (muro com deslocamentos muito reduzidos).

Figura 12

Em função de a estrutura ser um muro de gravidade sujeito a deslocamentos muito reduzidos, o solo adjacente ao mesmo estará em um estado de repouso-ativo.

Deste modo, utilizaremos as fórmulas de Myslèvec (1972):

$$p = \gamma \cdot z \cdot Ko_a - 2 \cdot Co \cdot \sqrt{Ko_a}$$
$$C_0 = \frac{C \cdot \operatorname{tg} \phi_0}{\operatorname{tg} \phi}$$

Da Tabela 1.4 temos:

$$\begin{split} \phi &= 34^{\circ} & \phi_0 = 22,837^{\circ} \\ Ko_a &= 0,4408 & C_0 = 7 \times 0,6243 = 4,3701 \\ & & & & \\ &$$

$$p = \gamma \cdot z \cdot Ko_a - 2 \cdot C_0 \cdot \sqrt{Ko_a}$$

$$p = 21 \cdot z \cdot 0,4408 - 2 \times 4,3701 \times \sqrt{0,4408}$$

$$p = 9,2568 \ z - 5,8029$$

para $z = 0 \rightarrow p = -5,8029$ kN/m² para z = 37 m → $p = 9,2568 \times 37 - 5,8029 = 336,6987$ kN/m²

Figura 13

1.5 – EFEITO DA COMPACTAÇÃO SOBRE MUROS DE CONTENÇÃO — TERRY S. INGOLD

O efeito da compactação sobre muros tem grande influência sobre as pressões laterais. O diagrama resultante da compactação é ilustrado a seguir (Fig. 14):

onde:

$$zc = \frac{-C\sqrt{Ka}}{\gamma (1 - Ka)} + \sqrt{\frac{Ka \cdot C^2}{\gamma^2 \cdot (1 - Ka)}} + \frac{2 \cdot p \cdot Ka^2}{\pi \cdot \gamma \cdot (1 - Ka^2)}$$
$$\sigma h_m = Ka \cdot \left(\gamma \cdot zc + \frac{2p}{\pi \cdot zc}\right) - 2 \cdot C \cdot \sqrt{Ka}$$
$$hc = \frac{\sigma h_m}{Ka \cdot \gamma}$$

Vamos agora mostrar, por intermédio de um exemplo, o efeito da compactação e sua magnitude, em relação ao empuxo calculado por Rankine ou Coulomb.

Figura 15

Vamos considerar um rolo compactador de p = 50 kN/m

$$p = \frac{\text{peso total}}{\text{largura do cilindro}}$$

a) Efeito da compactação

a.1) Cálculo de zc: c = 0

$$z = \sqrt{\frac{2 p k a^2}{\pi \cdot p \cdot (1 - Ka^2)}} = \sqrt{\frac{2 \times 50 \times 0.33^2}{\pi \cdot 18 \cdot (1 - 0.33^2)}} = 0.465 \text{ m}$$

a.2) Cálculo de $sh_m: c = 0$

$$\begin{split} \boldsymbol{\sigma}\boldsymbol{h}_{m} &= Ka \bigg(\boldsymbol{\gamma} \cdot \boldsymbol{z}\boldsymbol{c} + \frac{2p}{\boldsymbol{\pi} \cdot \boldsymbol{z}\boldsymbol{c}} \bigg) = 0,33 \bigg(18 \times 0,465 + \frac{2 \times 50}{\boldsymbol{\pi} \times 0,465} \bigg) \\ \boldsymbol{\sigma}\boldsymbol{h}_{m} &= 25,35 \text{ kN/m}^{2} \end{split}$$

b) Empuxo de terra

Figura 16

$$pa = Ka \cdot \gamma \cdot H - 2 \cdot C \cdot \sqrt{Ka}$$

$$pa = Ka \cdot \gamma \cdot H$$

$$\boxed{E = \frac{1}{2} \cdot Ka \cdot \gamma \cdot H^2}$$

$$\text{Empuxo} = \frac{1}{2} \cdot Ka \cdot \gamma \cdot H \cdot H = \frac{1}{2} \cdot Ka \cdot \gamma \cdot H^2$$

$$\text{Empuxo} = \frac{1}{2} \times 0,33 \times 18 \times H^2 = 2,97 \ H^2$$

Cálculo de hc

$$Ka \cdot \gamma \cdot hc = \sigma hm \rightarrow hc = \frac{\sigma hm}{Ka \cdot \gamma} = \frac{25,35}{0,33 \times 18} = 4,27 \text{ m}$$

c) Esforços totais no muro

I UGUIU II

H (cm)	Ea (kN/m)	ΔE (kN/m)	∆E/Ea (%)
2,0	11,88	32,92	270
3,0	26,73	43,43	162
4,0	47,52	47,98	101
5,0	74,25	48,22	65
8,0	190,08	48,22	25
10,0	297,00	48,22	16
15,0	668,25	48,22	7

para H = 2 m:

$$pa = Ka \cdot \gamma \cdot H = 0,33 \times 18 \times 2 = 11,88 \text{ kN/m}^2$$
$$Ea = \frac{1}{2} \cdot Ka \cdot \gamma \cdot H^2 = \frac{1}{2} \times 0,33 \times 18 \times 2^2 = 11,88 \text{ kN/m}$$
$$\Delta E = \left(\frac{2+1,535}{2} \times 25,35 - 11,88\right) = 32,92 \text{ kN/m}$$

para H = 3 m:

$$pa = Ka \cdot \gamma \cdot H = 0,33 \times 18 \times 3 = 17,82 \text{ kN/m}^2$$
$$Ea = \frac{1}{2} \cdot Ka \cdot \gamma \cdot H^2 = \frac{1}{2} \times 0,33 \times 18 \times 3^2 = 26,73 \text{ kN/m}$$
$$\Delta E = \left(\frac{3+2,535}{2} \times 25,35 - 26,73\right) = 43,426 \text{ kN/m} = 43,43 \text{ kN/m}$$

Figura 19

para H = 5 m:

$$pa = Ka \cdot \gamma \cdot H = 0,33 \times 18 \times 5 = 29,7 \text{ kN/m}^2$$
$$Ea = \frac{1}{2} \cdot Ka \cdot \gamma \cdot H^2 = \frac{1}{2} \times 0,33 \times 18 \times 5^2 = 74,25 \text{ kN/m}$$

Figura 20

Vemos por esse exemplo que, para pequenas aluras, os valores de empuxo, devido à compactactação, são bastante importantes.

1.6 – EMPUXOS DEVIDOS A CARGAS ESPECIAIS

1.6.1 – Empuxos devidos a cargas distribuídas na superfície

Figura 21

$$ho = \frac{qo}{\gamma}$$
 $o = Ka \cdot \gamma \cdot ho = Ka \cdot qo$

Exemplo:

Para
$$qo = 20 \text{ kN/m}^2$$
 $H = 5 \text{ m}$ $\gamma = 18 \text{ kN/m}^3$ $\phi = 30^\circ Ka = 0,33$ $c = 0$
 $ho = \frac{20}{18} = 1,11 \text{ m}$ $Ka \cdot qo = 0,33 \times 20 = 6,6 \text{ kN/m}^2$

1.6.2 – Empuxos devidos à água no solo: (N.A.) (Nível d'água)

Figura 22

Pressões verticais efetivas

$$\sigma v 1 = 0$$

$$\sigma v 2 = \gamma \cdot H 1$$

$$\sigma v 3 = \gamma \cdot H 1 + \gamma sub \cdot H 2$$

Pressões horizontais

$$p1 = Ka \cdot \sigma v1 - 2 \cdot C \cdot \sqrt{Ka}$$

$$p2 = Ka \cdot \gamma \cdot H1 - 2 \cdot C \cdot \sqrt{Ka}$$

$$p3 = Ka \cdot \gamma \cdot H1 + Ka \cdot \gamma sub \cdot H2 - 2 \cdot C \cdot \sqrt{Ka}$$

Pressões hidrostáticas

$$pw1 = 0$$
$$pw2 = 0$$
$$pw2 = h2$$

Diagrama de pressões

Figura 23

Exemplo:

Calcular o diagrama de pressão:

a) Pressões verticais efetivas

$$\begin{split} & \sigma v_1 = p_1 = 20 \text{ kN/m}^2 \\ & \sigma v_2 = p_2 = p_1 + \gamma_1 \cdot H_1 = 20 + 18 \times 1, 8 = 52, 4 \text{ kN/m}^2 \\ & \sigma v_3 = p_3 = p_2 + (\gamma_2 - \gamma a) \cdot h_2 = 52, 4 + (20 - 10) \times 1 = 62, 4 \text{ kN/m}^2 \\ & \sigma v_4 = p_4 = p_3 + (\gamma_3 - \gamma a) \cdot h_3 = 62, 4 + (20 - 10) \times 2, 4 = 86, 4 \text{ kN/m}^2 \\ & \sigma v_5 = p_5 = p_4 + (\gamma_4 - \gamma a) \cdot h_4 = 86, 4 + (19 - 10) \times 1, 5 = 99, 9 \text{ kN/m}^2 \end{split}$$

b) Coeficiente de empuxo ativo (Rankine)

solo 1:	$\phi = 32^{\circ} \rightarrow Ka_1 = 0,3073$		
solo 2:	$\phi = 30^{\circ} \rightarrow Ka_2 = 0,3333$		
solo 3:	$\phi = 10^{\circ} \rightarrow Ka_3 = 0,7041$	е	$\sqrt{Ka_3} = \sqrt{0,7041} = 0,8391$
solo 4:	$\phi = 20^{\circ} \rightarrow Ka_4 = 0,4903$	е	$\sqrt{Ka_4} = \sqrt{0,4903} = 0,7002$

c) Empuxos horizontais do solo

Solo 1:

$$\begin{aligned} & Ka_1 \cdot p_1 = 0,3073 \times 20 = 6,146 \text{ kN/m}^2 \\ & Ka_1 \cdot p_2 = 0,3073 \times 52,4 = 16,102 \text{ kN/m}^2 \end{aligned}$$

Solo 2:

$$\begin{split} & \textit{Ka}_2 \cdot p_2 = 0,3333 \times 52,4 = 17,465 ~ \text{kN/m}^2 \\ & \textit{Ka}_2 \cdot p_3 = 0,3333 \times 62,4 = 20,798 ~ \text{kN/m}^2 \end{split}$$

Solo 3:

$$\begin{split} & Ka_3 \cdot p_3 - 2 \cdot C_3 \cdot \sqrt{Ka_3} = 0,7041 \times 62, 4 - 2 \times 20 \times 0,8391 = 10,37 \text{ kN/m}^2 \\ & Ka_3 \cdot p_4 - 2 \cdot C_3 \cdot \sqrt{Ka_3} = 0,7041 \times 86, 4 - 2 \times 20 \times 0,8391 = 27,27 \text{ kN/m}^2 \end{split}$$

Solo 4:

$$\begin{split} & Ka_4 \cdot p_4 - 2 \cdot C_4 \cdot \sqrt{Ka_4} = 0,4903 \times 86,4 - 2 \times 20 \times 0,7002 = 14,35 \text{ kN/m}^2 \\ & Ka_4 \cdot p_5 - 2 \cdot C_4 \cdot \sqrt{Ka_4} = 0,4903 \times 99,9 - 2 \times 20 \times 0,7002 = 20,97 \text{ kN/m}^2 \end{split}$$

d) Pressões hidrostáticas

$$\begin{split} pw_1 &= 0 \\ pw_2 &= 0 \\ pw_3 &= \gamma a \cdot h_2 = 10 \cdot 1 = 10 \text{ kN/m}^2 \\ pw_4 &= pw_3 + \gamma a \cdot h_3 = 10 + 10 \times 2, 4 = 34 \text{ kN/m}^2 \\ pw_5 &= pw_4 + \gamma a \cdot h_4 = 34 + 10 \times 1, 5 = 49 \text{ kN/m}^2 \end{split}$$

Figura 25

1.6.3 – Cargas concentradas

As pressões laterais, usando a Teoria da Elasticidade e com testes de Spangler e Wickle (1956), são apresentadas a seguir:

Figura 26

Exemplo:

Figura 27

a) Para $m = 0,3 \rightarrow x = 0,3 \cdot 4 = 1,2$ m usaremos a equação para $m \le 0,4$

$$\sigma h = \frac{0,28 \cdot V}{H^2} \cdot \frac{n^2}{(0,16+n^2)^3}$$

$$n = 0,2 \to \sigma h = \frac{0,28 \cdot 100}{4^2} \cdot \frac{0,2^2}{(0,16+0,2^2)^3} = 8,75 \text{ kN/m}^2$$

$$n = 0,4 \to \sigma h = \frac{0,28 \cdot 100}{4^2} \cdot \frac{0,4^2}{(0,16+0,4^2)^3} = 8,55 \text{ kN/m}^2$$

$$n = 0,6 \to \sigma h = \frac{0,28 \cdot 100}{4^2} \cdot \frac{0,6^2}{(0,16+0,6^2)^3} = 4,48 \text{ kN/m}^2$$

$$n = 0,8 \to \sigma h = \frac{0,28 \cdot 100}{4^2} \cdot \frac{0,8^2}{(0,16+0,8^2)^3} = 2,19 \text{ kN/m}^2$$

$$n = 1,0 \to \sigma h = \frac{0,28 \cdot 100}{4^2} \cdot \frac{1^2}{(0,16+1^2)^3} = 1,12 \text{ kN/m}^2$$

Figura 28

b) Para $m = 0.5 \rightarrow x = 0.5 \cdot 4 = 2.0$ m usaremos a fórmula m > 0.4

$$\sigma h = \frac{1,77 \cdot V}{H^2} \cdot \frac{m^2 \cdot n^2}{(m^2 + n^2)^3}$$
para $n = 0, 2 \rightarrow \sigma h = \frac{1,77 \cdot 100}{4^2} \cdot \frac{0,5^2 \cdot 0,2^2}{(0,5^2 + 0,2^2)^3} = 4,53 \text{ kN/m}^2$
para $n = 0, 4 \rightarrow \sigma h = \frac{1,77 \cdot 100}{4^2} \cdot \frac{0,5^2 \cdot 0,4^2}{(0,5^2 + 0,4^2)^3} = 6,42 \text{ kN/m}^2$
para $n = 0, 6 \rightarrow \sigma h = \frac{1,77 \cdot 100}{4^2} \cdot \frac{0,5^2 \cdot 0,6^2}{(0,5^2 + 0,6^2)^3} = 4,38 \text{ kN/m}^2$
para $n = 0, 8 \rightarrow \sigma h = \frac{1,77 \cdot 100}{4^2} \cdot \frac{0,5^2 \cdot 0,8^2}{(0,5^2 + 0,8^2)^3} = 1,99 \text{ kN/m}^2$
para $n = 1, 0 \rightarrow \sigma h = \frac{1,77 \cdot 100}{4^2} \cdot \frac{0,5^2 \cdot 1^2}{(0,5^2 + 1^2)^3} = 1,42 \text{ kN/m}^2$

Figura 29

1.6.4 – Cargas lineares

As pressões laterais, usando a Teoria da Elasticidade e com testes de Terzaghi (1954), são apresentadas a seguir:

Figura 30

Exemplo:

Figura 31

a) Para $m=0,3 \twoheadrightarrow x=0,3 \cdot 4=1,2$ m usaremos a equação para $m \le 0,4$

$$\sigma h = \frac{q}{H} \cdot \frac{0.203 \cdot n}{(0.16 + n^2)^2}$$

$$n = 0, 2 \to \sigma h = \frac{100}{4} \cdot \frac{0.203 \cdot 0.2}{(0.16 + 0.2^2)^2} = 25,37 \text{ kN/m}^2$$

$$n = 0, 4 \to \sigma h = \frac{100}{4} \cdot \frac{0.203 \cdot 0.4}{(0.16 + 0.4^2)^2} = 19,82 \text{ kN/m}^2$$

$$n = 0, 6 \to \sigma h = \frac{100}{4} \cdot \frac{0.203 \cdot 0.6}{(0.16 + 0.6^2)^2} = 11,26 \text{ kN/m}^2$$

$$n = 0, 8 \to \sigma h = \frac{100}{4} \cdot \frac{0.203 \cdot 0.8}{(0.16 + 0.8^2)^2} = 6,34 \text{ kN/m}^2$$

$$n = 1, 0 \to \sigma h = \frac{100}{4} \cdot \frac{0.203 \cdot 1}{(0.16 + 1^2)^2} = 3,77 \text{ kN/m}^2$$

Figura 32

b) Para $m = 0.5 \rightarrow x = 0.5 \cdot 4 = 2$ m usaremos a equação m > 0.4

$$\sigma h = \frac{4}{\pi} \cdot \frac{q}{H} \cdot \frac{m^2 \cdot n}{(m^2 + n^2)^2}$$
para $n = 0, 2 \to \sigma h = \frac{4}{\pi} \cdot \frac{100}{4} \cdot \frac{0, 5^2 \cdot 0, 2}{(0, 5^2 + 0, 2^2)^2} = 18,92 \text{ kN/m}^2$
para $n = 0, 4 \to \sigma h = \frac{4}{\pi} \cdot \frac{100}{4} \cdot \frac{0, 5^2 \cdot 0, 4}{(0, 5^2 + 0, 4^2)^2} = 18,93 \text{ kN/m}^2$
para $n = 0, 6 \to \sigma h = \frac{4}{\pi} \cdot \frac{100}{4} \cdot \frac{0, 5^2 \cdot 0, 6}{(0, 5^2 + 0, 6^2)^2} = 12,3 \text{ kN/m}^2$
para $n = 0, 8 \to \sigma h = \frac{4}{\pi} \cdot \frac{100}{4} \cdot \frac{0, 5^2 \cdot 0, 8}{(0, 5^2 + 0, 8^2)^2} = 8,04 \text{ kN/m}^2$
para $n = 1, 0 \to \sigma h = \frac{4}{\pi} \cdot \frac{100}{4} \cdot \frac{0, 5^2 \cdot 1}{(0, 5^2 + 1^2)^2} = 5,09 \text{ kN/m}^2$

Figura 33

1.6.5 – Carga tipo sapata corrida

As pressões laterais, usando a Teoria da Elasticidade e com testes de Therzaghi (1943), são apresentadas a seguir: cargas do tipo rodovia, ferrovia, aterro sobre a superfície do terreno, paralelo ao muro de contenção.

Figura 34

Exemplo:

Figura 35

$$\sigma h = \frac{2q}{\pi} (\beta - \sin\beta \cos 2\alpha)$$
$$n = 0, 2 \rightarrow z = 0, 2 \cdot 4 = 0, 8 \text{ m}$$

Figura 36

$$tg\alpha = \frac{3+1}{0,8} = 5$$

 $\alpha = \arctan 5 = 1,372 \text{ rad}$
 $tg\left(\alpha + \frac{\beta}{2}\right) = \frac{5}{0,8} = 6,25$
 $\alpha + \frac{\beta}{2} = 1,4121 \rightarrow \beta = 0,0795 \text{ rad}$
 $\sigma h = \frac{2 \cdot 30}{\pi} (0,0795 - \text{sen } (0,0795) \cdot \cos(2 \cdot 1,3724)) = 2,92 \text{ kN/m}^2$

para $n = 0,4 \rightarrow z = 0,4 \cdot 4 = 1,6$ m

$$tg\alpha = \frac{3+1}{1,6} = 2,5 \rightarrow \alpha = 1,1903 \text{ rad}$$

$$tg\left(\alpha + \frac{\beta}{2}\right) = \frac{5}{1,6} = 3,125$$

$$\alpha + \frac{\beta}{2} = 1,2611 \rightarrow \beta = 0,1416 \text{ rad}$$

$$\sigma h = \frac{2 \cdot 30}{\pi} (0,1416 - \text{sen}(0,1416) \cdot \cos(2 \cdot 1,1903)) = 4,65 \text{ kN/m}^2$$

para
$$n = 0, 6 \rightarrow z = 0, 6 \cdot 4 = 2, 4 \text{ m}$$

 $\operatorname{tg} \alpha = \frac{3+1}{2, 4} = 1,6667 \rightarrow \alpha = 1,0304 \text{ rad}$
 $\operatorname{tg} \left(\alpha + \frac{\beta}{2} \right) = \frac{5}{2, 4} = 2,08$
 $\alpha + \frac{\beta}{2} = 1,1233 \rightarrow \beta = 0,1858 \text{ rad}$
 $\sigma h = \frac{2 \cdot 30}{\pi} (0,1858 - \operatorname{sen}(0,1858) \cdot \cos(2 \cdot 1,0304)) = 4,96 \text{ kN/m}^2$

para
$$n = 0.8 \rightarrow z = 0.8 \cdot 4 = 3.2 \text{ m}$$

 $\operatorname{tg} \alpha = \frac{3+1}{3.2} = 1.25 \rightarrow \alpha = 0.8961 \text{ rad}$
 $\operatorname{tg} \left(\alpha + \frac{\beta}{2} \right) = \frac{5}{3.2} = 1.5625 \rightarrow 2 + \frac{\beta}{2} = 1.0015$
 $\beta = 0.2108 \text{ rad}$
 $\sigma h = \frac{2 \cdot 30}{\pi} (0.2108 - \operatorname{sen}(0.1208) \cdot \cos(2 \cdot 0.8961)) = 4.90 \text{ kN/m}^2$

para $n = 1 \rightarrow z = 4$

$$tg\alpha = \frac{3+1}{4} = 1 \rightarrow \alpha = 0,7854 \text{ rad}$$

$$tg\left(\alpha + \frac{\beta}{2}\right) = \frac{5}{4} = 1,25 \rightarrow \alpha + \frac{\beta}{2} = 0,8961$$

$$\beta = 0,2213 \text{ rad}$$

$$\sigma h = \frac{2 \cdot 30}{\pi} (0,2213 - \text{sen}(0,2213) \cdot \cos(2 \cdot 0,7854)) = 4,23 \text{ kN/m}^2$$

Figura 37