AIRTON RAMOS

ANÁLISE DE SISTEMAS ELETROMAGNÉTICOS

Airton Ramos

ANÁLISE DE SISTEMAS ELETROMAGNÉTICOS

Análise de sistemas eletromagnéticos © 2020 Airton Ramos Editora Edgard Blücher Ltda.

Imagem da capa: iStockphoto

Blucher

Rua Pedroso Alvarenga, 1245, 4° andar 04531-934 – São Paulo – SP – Brasil Tel.: 55 11 3078-5366 contato@blucher.com.br www.blucher.com.br

Segundo o Novo Acordo Ortográfico, conforme 5. ed. do *Vocabulário Ortográfico da Língua Portuguesa*, Academia Brasileira de Letras, março de 2009. Dados Internacionais de Catalogação na Publicação (CIP) Angélica Ilacqua CRB-8/7057

Ramos, Airton Análise de sistemas eletromagnéticos / Airton Ramos. - São Paulo : Blucher, 2020.

728 p. : il.

Bibliografia ISBN 978-65-5506-005-8 (impresso) ISBN 978-65-5506-003-4 (eletrônico)

1. Análise de sistemas. I. Título.

É proibida a reprodução total ou parcial por quaisquer meios sem autorização escrita da editora.

20-0370

CDD 621.3823

Todos os direitos reservados pela Editora Edgard Blücher Ltda. Índices para catálogo sistemático: 1.Análise de sistemas

Conteúdo

1	Coo	ordenadas ortogonais e funções vetoriais	1		
	1.1	Sistemas de coordenadas	1		
	1.2	Diferenciação e integração vetorial	4		
	1.3	Questões	7		
2	Força entre cargas elétricas				
	2.1	Lei de Coulomb	11		
	2.2	Cálculo da força elétrica	12		
	2.3	Questões	19		
3	For	ça entre correntes elétricas	21		
	3.1	Força magnética	21		
	3.2	Cálculo da força magnética	22		
	3.3	Questões	26		
4	Gradiente de uma função escalar				
4	Gra	adiente de uma função escalar	29		
4	Gra 4.1	adiente de uma função escalar Derivada direcional	29 29		
4	Gra 4.1 4.2	adiente de uma função escalarDerivada direcionalOperador gradiente	29 29 30		
4	Gra 4.1 4.2 4.3	adiente de uma função escalar Derivada direcional Operador gradiente Questões	29 29 30 33		
4 5	Gra 4.1 4.2 4.3 Car	adiente de uma função escalar Derivada direcional Operador gradiente Questões mpo elétrico e potencial elétrico	 29 30 33 35 		
4 5	Gra 4.1 4.2 4.3 Car 5.1	adiente de uma função escalar Derivada direcional Operador gradiente Questões mpo elétrico e potencial elétrico Conceitos de campo elétrico e potencial elétrico	 29 29 30 33 35 		
4 5	Gra 4.1 4.2 4.3 Car 5.1 5.2	adiente de uma função escalar Derivada direcional Operador gradiente Questões Questões mpo elétrico e potencial elétrico Conceitos de campo elétrico e potencial elétrico Cálculo de campo elétrico e potencial elétrico	 29 30 33 35 36 		
4 5	Gra 4.1 4.2 4.3 Car 5.1 5.2 5.3	adiente de uma função escalar Derivada direcional Operador gradiente Questões Questões mpo elétrico e potencial elétrico Conceitos de campo elétrico e potencial elétrico Cálculo de campo elétrico e potencial elétrico Questões	 29 30 33 35 36 47 		
4 5	Gra 4.1 4.2 4.3 Car 5.1 5.2 5.3 Flu	adiente de uma função escalar Derivada direcional Operador gradiente Questões Questões mpo elétrico e potencial elétrico Conceitos de campo elétrico e potencial elétrico Cálculo de campo elétrico e potencial elétrico Questões valuestões valuestões <t< td=""><td> 29 29 30 33 35 36 47 49 </td></t<>	 29 29 30 33 35 36 47 49 		
4 5 6	Gra 4.1 4.2 4.3 Car 5.1 5.2 5.3 Flue 6.1	adiente de uma função escalar Derivada direcional Operador gradiente Questões adiente e potencial elétrico conceitos de campo elétrico e potencial elétrico Cálculo de campo elétrico e potencial elétrico Questões valuestões betrico e potencial elétrico cálculo de campo elétrico e potencial elétrico Questões cálculo de campo elétrico e potencial elétrico cálculo de campo vetorial puestões conceitos de um campo vetorial	 29 29 30 33 35 36 47 49 49 		
4 5 6	Gra 4.1 4.2 4.3 Car 5.1 5.2 5.3 Flu 6.1 6.2	adiente de uma função escalar Derivada direcional Operador gradiente Questões Questões mpo elétrico e potencial elétrico Conceitos de campo elétrico e potencial elétrico Cálculo de campo elétrico e potencial elétrico Questões valuestões Adiente de um campo vetorial Fluxo de um campo vetorial Operador divergente	 29 29 30 33 35 36 47 49 49 51 		

7	Lei	de Gauss elétrica	59
	7.1	Fluxo elétrico e lei de Gauss	59
	7.2	Cálculo de indução elétrica	60
	7.3	Questões	64
8	Den	sidade de fluxo magnético e lei de Biot-Savart	65
	8.1	Fluxo magnético	65
	8.2	Lei de Biot-Savart	67
	8.3	Cálculo da indução magnética	68
	8.4	Questões	78
9	Circ	culação e rotacional de um campo vetorial	79
	9.1	Circulação e operador rotacional	79
	9.2	Cálculo do rotacional	82
	9.3	Questões	88
10	Can	npo magnético e lei de Ampère	91
	10.1	Lei de Ampère	91
	10.2	Cálculo de campo magnético	95
	10.3	Questões	97
11	Ope	rador laplaciano e potencial magnético	99
	11.1	Laplaciano e equação de Laplace	99
	11.2	Campo vetorial determinado por seu divergente e seu rotacional	100
	11.3	Potencial magnético	102
	11.4	Questões	106
12	Con	tinuidade, condições de contorno e método das imagens	107
	12.1	Continuidade em interfaces	107
	12.2	Condições de contorno	109
	12.3	Método das imagens	112
	12.4	Questões	121
13	Equ	ação de Laplace em coordenadas retangulares	123
	13.1	Expansão em série de Fourier	123
	13.2	Solução da equação de Laplace em coordenadas retangulares $\ \ . \ .$	127
	13.3	Questões	140

14	Equa	ação de Laplace em coordenadas cilíndricas	143
	14.1	Expansão em série de Bessel	143
	14.2	Cálculo de potencial em coordenadas cilíndricas	150
	14.3	Questões	159
15	Equa	ação de Laplace em coordenadas esféricas	161
	15.1	Expansão em funções de Legendre $\ . \ . \ . \ . \ . \ . \ . \ .$	161
	15.2	Solução da equação de Laplace em coordenadas esféricas	166
	15.3	Questões	178
16	Diss	ipação e armazenamento de energia	179
	16.1	Potência dissipada	179
	16.2	Energia elétrica	182
	16.3	Energia magnética	185
	16.4	Questões	190
17	Intro	odução à eletrodinâmica	193
	17.1	Corrente de deslocamento	193
	17.2	Força eletromotriz	195
	17.3	Acoplamento magnético	202
	17.4	Torque eletrodinâmico e motor de indução	206
	17.5	Efeito pelicular	210
	17.6	Questões	217
18	Ond	as eletromagnéticas	219
	18.1	Ondas no espaço livre não dissipativo $\hfill \ldots \ldots \ldots \ldots \ldots$	219
	18.2	Ondas no espaço livre dissipativo $\hdots \hdots \$	228
	18.3	Fluxo de potência em uma onda eletromagnética $\ . \ . \ . \ .$.	238
	18.4	Questões	245
19	Ond	as eletromagnéticas em interfaces	249
	19.1	Polarização da onda eletromagnética	249
	19.2	Reflexão e transmissão com incidência normal	251
	19.3	Reflexão e transmissão com incidência oblíqua	256
	19.4	Reflexão nula e reflexão total \hdots	260
	19.5	Reflexão e transmissão através de uma parede	262
	19.6	Difração	265
	19.7	Questões	276

20	Rad	iação e espectro eletromagnético	281
	20.1	Potencial retardado	281
	20.2	Dipolo hertziano	286
	20.3	Radiação de partículas carregadas	291
	20.4	Espectro eletromagnético	298
	20.5	Transformações de Lorentz do	
		campo eletromagnético	301
	20.6	Questões	308
21	Forg	ça e movimento na interação da matéria com	
	o ca	mpo eletromagnético	309
	21.1	Movimento de partículas no vácuo	309
	21.2	Movimento de partículas em um meio condutor	314
	21.3	Relações entre força e intensidade de campo:	
		tensor das tensões de Maxwell	317
	21.4	Questões	324
22	Estr	rutura eletrônica e condutores	327
	22.1	Estrutura cristalina	327
	22.2	Forças intermoleculares	328
	22.3	Bandas de energia	334
	22.4	Condução em semicondutores	343
	22.5	Supercondutores	351
	22.6	Condução em isolantes amorfos	356
	22.7	Questões	361
23	Pola	arização elétrica	363
	23.1	Dipolo elétrico e polarizabilidade molecular	363
	23.2	Polarização macroscópica e relação constitutiva	367
	23.3	Polarização ferroelétrica	375
	23.4	Campo de reação e fator de despolarização	376
	23.5	Energia de polarização	379
	23.6	Polarização de um objeto esférico em	
		um campo uniforme	385
	23.7	Questões	389
24	Disp	persão e ruptura dielétrica	393
	24.1	Ressonância	393
	24.2	Relaxação	396

	24.3	Dispersão por carga espacial
	24.4	Dispersão por saltos
	24.5	Ruptura dielétrica
		24.5.1 Ruptura em gases
		24.5.2 Ruptura em líquidos
		24.5.3 Ruptura em sólidos
	24.6	Questões
25	Mag	gnetização 417
	25.1	Momento de dipolo magnético
	25.2	Magnetização
	25.3	Lei Curie-Weiss e transição ferromagnética
	25.4	Modelo quântico da magnetização
	25.5	Estado ferromagnético
	25.6	Relação constitutiva magnética
	25.7	Energia armazenada e energia dissipada na magnetização $\ . \ . \ . \ . \ 439$
	25.8	Permeabilidade magnética como função
		da frequência
	25.9	Questões
00	Circ	uito magnético 455
20	Unt	100
26	26.1	Campo desmagnetizante
26	26.1 26.2	Campo desmagnetizante
26	26.1 26.2 26.3	Campo desmagnetizante 455 Força magnetomotriz e relutância 459 Circuito magnético com ímã permanente 470
20	26.1 26.2 26.3 26.4	Campo desmagnetizante 455 Força magnetomotriz e relutância 459 Circuito magnético com ímã permanente 470 Força e torque em circuitos magnéticos 473
20	26.1 26.2 26.3 26.4 26.5	Campo desmagnetizante455Força magnetomotriz e relutância459Circuito magnético com ímã permanente470Força e torque em circuitos magnéticos473Questões476
20	 26.1 26.2 26.3 26.4 26.5 Cálo 	Campo desmagnetizante 455 Força magnetomotriz e relutância 459 Circuito magnético com ímã permanente 470 Força e torque em circuitos magnéticos 473 Questões 476 culo eletromagnético computacional 481
26	 26.1 26.2 26.3 26.4 26.5 Cálo 27.1 	Campo desmagnetizante455Força magnetomotriz e relutância459Circuito magnético com ímã permanente470Força e torque em circuitos magnéticos473Questões476culo eletromagnético computacional481Integração computacional481
20	 26.1 26.2 26.3 26.4 26.5 Cálo 27.1 27.2 	Campo desmagnetizante455Força magnetomotriz e relutância459Circuito magnético com ímã permanente470Força e torque em circuitos magnéticos473Questões476culo eletromagnético computacional481Integração computacional481Método das diferenças finitas484
20	 26.1 26.2 26.3 26.4 26.5 Cáld 27.1 27.2 27.3 	Campo desmagnetizante455Força magnetomotriz e relutância459Circuito magnético com ímã permanente470Força e torque em circuitos magnéticos473Questões476culo eletromagnético computacional481Integração computacional481Método das diferenças finitas484Método das diferenças finitas no domínio tempo494
20	 26.1 26.2 26.3 26.4 26.5 Cálo 27.1 27.2 27.3 27.4 	Campo desmagnetizante455Força magnetomotriz e relutância459Circuito magnético com ímã permanente470Força e torque em circuitos magnéticos473Questões476culo eletromagnético computacional481Integração computacional481Método das diferenças finitas484Método das diferenças finitas no domínio tempo494Método dos elementos finitos502
20	 26.1 26.2 26.3 26.4 26.5 Cálo 27.1 27.2 27.3 27.4 27.5 	Campo desmagnetizante455Força magnetomotriz e relutância459Circuito magnético com ímã permanente470Força e torque em circuitos magnéticos473Questões476culo eletromagnético computacional481Integração computacional481Método das diferenças finitas484Método das diferenças finitas no domínio tempo494Método dos elementos finitos502Método dos momentos514
20	 26.1 26.2 26.3 26.4 26.5 Cálo 27.1 27.2 27.3 27.4 27.5 27.6 	Campo desmagnetizante455Força magnetomotriz e relutância459Circuito magnético com ímã permanente470Força e torque em circuitos magnéticos473Questões476culo eletromagnético computacional481Integração computacional481Método das diferenças finitas484Método das diferenças finitas no domínio tempo494Método dos elementos finitos502Método dos momentos514Questões520
20 27 28	26.1 26.2 26.3 26.4 26.5 Cálo 27.1 27.2 27.3 27.4 27.5 27.6 Linh	Campo desmagnetizante455Força magnetomotriz e relutância459Circuito magnético com ímã permanente470Força e torque em circuitos magnéticos473Questões476culo eletromagnético computacional481Integração computacional481Método das diferenças finitas484Método das diferenças finitas no domínio tempo494Método dos elementos finitos502Método dos momentos514Questões520mas de transmissão523
20 27 28	 26.1 26.2 26.3 26.4 26.5 Cálo 27.1 27.2 27.3 27.4 27.5 27.6 Linh 28.1 	Campo desmagnetizante455Força magnetomotriz e relutância459Circuito magnético com ímã permanente470Força e torque em circuitos magnéticos473Questões476culo eletromagnético computacional481Integração computacional481Método das diferenças finitas484Método das diferenças finitas no domínio tempo494Método dos elementos finitos502Método dos momentos514Questões520nas de transmissão523Circuito equivalente de uma linha de transmissão523
20 27 28	26.1 26.2 26.3 26.4 26.5 Cálo 27.1 27.2 27.3 27.4 27.5 27.6 Linh 28.1 28.2	Campo desmagnetizante455Força magnetomotriz e relutância459Circuito magnético com ímã permanente470Força e torque em circuitos magnéticos473Questões476culo eletromagnético computacional481Integração computacional481Método das diferenças finitas484Método das diferenças finitas no domínio tempo494Método dos elementos finitos502Método dos momentos514Questões523Circuito equivalente de uma linha de transmissão523Solução geral para tensão e corrente503

	28.3	Sistema sem reflexão	532
	28.4	Sistema com reflexão	535
	28.5	Transitório na linha de transmissão $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	538
	28.6	Fluxo de potência na linha de transmissão	540
	28.7	Aproximações para $Z_o \in \gamma$	543
	28.8	Distorção	548
	28.9	Impedância na linha de transmissão $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	550
	28.10	OCasamento de impedância	553
		28.10.1 Acoplador com rede de reatâncias	553
		28.10.2 A coplador com transformador de quarto de onda $\ . \ . \ .$.	556
		28.10.3 Acoplador com $stub$ simples $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	558
	28.11	1Questões	561
20	Cui	as de ende	565
29	90 1	Equações dos campos om um quia de onda retangular	565 565
	29.1	Induces TM	568
	29.2	Modos TE	500 570
	29.5	Características de propagação no guia de onda retangular	570 579
	29.4	Potência transportada e atenuação	012
	20.0	em um guia de onda	575
	29.6	Análise de um guia de onda circular	582
	29.7	Acoplamento de sinal em um guia de onda	587
	29.8	Cavidades ressonantes	589
	29.9	Guia de onda dielétrico	594
	29.10	Questões	605
	-0.11		000
30	Teor	ria das antenas	607
	30.1	Enlace por ondas eletromagnéticas	607
		30.1.1 Potência irradiada	608
		30.1.2 Ganho diretivo	610
		30.1.3 Diagrama de irradiação	610
		30.1.4 Impedância da antena \ldots \ldots \ldots \ldots \ldots \ldots	611
		30.1.5 Reciprocidade e acoplamento entre antenas $\ldots \ldots \ldots$	613
		30.1.6 Fórmula de transmissão de Friis	618
	30.2	Antena dipolo	620
		30.2.1 Distribuição de corrente em uma antena dipolo $\ .\ .\ .\ .$	621
		30.2.2 Campos e potência irradiada por uma antena dipolo $\ .\ .\ .$	621
		30.2.3 Impedância da antena dipolo \hdots	625

		30.2.4 Efeitos da reflexão em uma superfície horizontal \ldots	. 629
	30.3	Antena em anel	. 645
	30.4	Questões	. 654
31	Ant	enas direcionais	657
	31.1	Conjunto de antenas	. 657
	31.2	Impedância mútua entre antenas	. 663
	31.3	Antena corneta	. 677
	31.4	Antena com refletor	. 682
	31.5	Questões	. 686
32	Pro	pagação na atmosfera terrestre	689
	32.1	Propagação em um plasma	. 689
	32.2	Ondas de superfície	. 697
	32.3	Propagação na troposfera	. 699
	32.4	Propagação na ionosfera	. 704
	32.5	Questões	. 710
33	Refe	erências	711

Capítulo 1

Coordenadas ortogonais e funções vetoriais

1.1 Sistemas de coordenadas

A descrição de constantes e variáveis vetoriais exige a utilização de um sistema de referência de posição e orientação espacial, e os sistemas que consistem em eixos ortogonais são os mais comuns e também os mais fáceis de utilizar. A Figura 1.1 mostra como os eixos são nomeados nos sistemas retangular, cilíndrico e esférico, bem como os conjuntos de vetores unitários para a representação vetorial nesses sistemas.

Para estabelecer as relações entre as coordenadas nos três sistemas ortogonais mostrados, iniciamos descrevendo a posição de um ponto no espaço através do vetor de posição \vec{r} , porém utilizando o sistema de vetores unitários retangulares.

Figura 1.1: Sistemas de coordenadas ortogonais: (a) coordenadas retangulares; (b) coordenadas cilíndricas; (c) coordenadas esféricas.

Assim, temos:

$$\vec{r} = x\,\vec{u}_x + y\,\vec{u}_y + z\,\vec{u}_z \tag{1.1}$$

$$\vec{r} = \rho \cos\phi \, \vec{u}_x + \rho \, \sin\phi \, \vec{u}_y + z \, \vec{u}_z \tag{1.2}$$

$$\vec{r} = r \, sen\theta \, cos\phi \, \vec{u}_x + r \, sen\theta sen\phi \, \vec{u}_y + r \, cos\theta \, \vec{u}_z \tag{1.3}$$

Desse modo, obtemos as seguintes relações entre as coordenadas:

$$x = \rho \cos\phi = r \sin\theta \cos\phi \tag{1.4}$$

$$y = \rho \, sen\phi = r \, sen\theta \, sen\phi \tag{1.5}$$

$$z = r \cos\theta \tag{1.6}$$

$$\rho = \sqrt{x^2 + y^2} = r \, sen\theta \tag{1.7}$$

$$tg\phi = y/x \tag{1.8}$$

Também podemos obter as relações entre os vetores unitários.

$$\vec{u}_{\rho} = \frac{\partial \vec{r}/\partial \rho}{|\partial \vec{r}/\partial \rho|} = \cos\phi \, \vec{u}_x + \, \sin\phi \, \vec{u}_y \tag{1.9}$$

$$\vec{u}_{\phi} = \frac{\partial \vec{r} / \partial \phi}{|\partial \vec{r} / \partial \phi|} = -\operatorname{sen}\phi \, \vec{u}_x + \cos \phi \vec{u}_y \tag{1.10}$$

$$\vec{u}_r = \frac{\partial \vec{r} / \partial r}{|\partial \vec{r} / \partial r|} = sen\theta \cos\phi \, \vec{u}_x + sen\theta sen\phi \, \vec{u}_y + \cos\theta \, \vec{u}_z \tag{1.11}$$

$$\vec{u}_{\theta} = \frac{\partial \vec{r}/\partial \theta}{|\partial \vec{r}/\partial \theta|} = \cos\theta \cos\phi \,\vec{u}_x + \cos\theta \sin\phi \,\vec{u}_y - \,\sin\theta \,\vec{u}_z \tag{1.12}$$

Das Equações (1.9) a (1.12) podem ser obtidas as seguintes relações:

$$\vec{u}_x = \cos\phi \, \vec{u}_\rho - \sin\phi \, \vec{u}_\phi \tag{1.13}$$

$$\vec{u}_y = sen\phi \, \vec{u}_\rho + \cos\phi \, \vec{u}_\phi \tag{1.14}$$

$$\vec{u}_x = sen\theta \cos\phi \, \vec{u}_r + \cos\theta \cos\phi \, \vec{u}_\theta - sen\phi \, \vec{u}_\phi \tag{1.15}$$

$$\vec{u}_y = sen\theta \, sen\phi \, \vec{u}_r + \cos\theta \, sen\phi \, \vec{u}_\theta + \cos\phi \, \vec{u}_\phi \tag{1.16}$$

$$\vec{u}_z = \cos\theta \vec{u}_r - \, \sin\theta \vec{u}_\theta \tag{1.17}$$

$$\vec{u}_{\rho} = sen\theta \ \vec{u}_r + \cos\theta \ \vec{u}_{\theta} \tag{1.18}$$

Os resultados anteriores podem ser resumidos nas seguintes matrizes de transformação:

$$\begin{bmatrix} \vec{u}_x \\ \vec{u}_y \\ \vec{u}_z \end{bmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \vec{u}_\rho \\ \vec{u}_\phi \\ \vec{u}_z \end{bmatrix}$$
(1.19)

$$\begin{bmatrix} \vec{u}_{\rho} \\ \vec{u}_{\phi} \\ \vec{u}_{z} \end{bmatrix} = \begin{pmatrix} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \vec{u}_{x} \\ \vec{u}_{y} \\ \vec{u}_{z} \end{bmatrix}$$
(1.20)

$$\begin{bmatrix} \vec{u}_x \\ \vec{u}_y \\ \vec{u}_z \end{bmatrix} = \begin{pmatrix} sen\theta cos\phi & cos\theta cos\phi & -sen\phi \\ sen\theta sen\phi & cos\theta sen\phi & cos\phi \\ cos\theta & -sen\theta & 0 \end{pmatrix} \begin{bmatrix} \vec{u}_r \\ \vec{u}_\theta \\ \vec{u}_\phi \end{bmatrix}$$
(1.21)

$$\begin{bmatrix} \vec{u}_r \\ \vec{u}_\theta \\ \vec{u}_\phi \end{bmatrix} = \begin{pmatrix} sen\theta cos\phi & sen\theta sen\phi & cos\theta \\ cos\theta cos\phi & cos\theta sen\phi & -sen\theta \\ -sen\phi & cos\phi & 0 \end{pmatrix} \begin{bmatrix} \vec{u}_x \\ \vec{u}_y \\ \vec{u}_z \end{bmatrix}$$
(1.22)

Uma função vetorial $\vec{A} = A_x \vec{u}_x + A_y \vec{u}_y + A_z \vec{u}_z$, descrita no sistema retangular, pode ser transformada para os sistemas cilíndrico ou esférico usando as transformações matriciais indicadas anteriormente. Em coordenadas cilíndricas, usando a Equação (1.19), obtemos:

$$\vec{A} = \begin{bmatrix} A_x A_y A_z \end{bmatrix} \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \vec{u}_\rho\\ \vec{u}_\phi\\ \vec{u}_z \end{bmatrix}$$
(1.23)

$$= (A_x \cos\phi + A_y \sin\phi) \, \vec{u}_{\rho} + (A_y \cos\phi - A_x \sin\phi) \, \vec{u}_{\phi} + A_z \vec{u}_z$$

Já em coordenadas esféricas, usando a Equação (1.21), resulta:

$$\vec{A} = \begin{bmatrix} A_x A_y A_z \end{bmatrix} \begin{pmatrix} sen\theta cos\phi & cos\theta cos\phi & -sen\phi \\ sen\theta sen\phi & cos\theta sen\phi & cos\phi \\ cos\theta & -sen\theta & 0 \end{pmatrix} \begin{bmatrix} \vec{u}_r \\ \vec{u}_\theta \\ \vec{u}_\phi \end{bmatrix}$$
(1.24)

$$= (A_x sen\theta cos\phi + A_y sen\theta sen\phi + A_z cos\theta) \vec{u}_r + (A_x cos\theta cos\phi + A_y cos\theta sen\phi - A_z sen\theta) \vec{u}_\theta + (A_y cos\phi - A_x sen\phi) \vec{u}_\phi$$

1.2 Diferenciação e integração vetorial

As fórmulas a seguir fornecem os deslocamentos diferenciais nos eixos coordenados e são úteis na descrição de integrais de linha, superfície e volume.

$dl_x = dx$	
$dl_y = dy$	(1.25)
$dl_z = dz$	
$dl_{ ho} = d ho$	
$dl_{\phi}= ho d\phi$	(1.26)
$dl_z = dz$	
dl - dr	
$au_r = ar$	
$dl_{ heta} = r d heta$	(1.27)
$dl_{\phi}=rsen heta d\phi$	

Um elemento de área em um plano coordenado é dado pelo produto dos deslocamentos nos eixos paralelos a esse plano. Por exemplo, para coordenadas genéricas (p, w, t), $dS_p = dl_w dl_t$, $dS_w = dl_p dl_t$, e $dS_t = dl_p dl_w$. Um elemento de volume é obtido com a multiplicação dos três deslocamentos coordenados: $dV = dl_p dl_w dl_t$. A diferenciação e a integração de funções vetoriais são obtidas termo a termo nas três componentes vetoriais.

Seja $\vec{F}(t)$ uma função da variável t:

$$\frac{d\vec{F}}{dt} = \frac{dF_x}{dt}\vec{u}_x + \frac{dF_y}{dt}\vec{u}_y + \frac{dF_z}{dt}\vec{u}_z \tag{1.28}$$

$$\int \vec{F}dt = \int F_x dt \,\vec{u}_x + \int F_y dt \,\vec{u}_y + \int F_z dt \,\vec{u}_z \tag{1.29}$$

Deve-se atentar para o fato de os vetores unitários \vec{u}_{ρ} , \vec{u}_{ϕ} , $\vec{u}_{r} \in \vec{u}_{\theta}$ não serem constantes, portanto, suas variações devem ser incluídas nas derivações e integrações de funções vetoriais.

Como exemplo, considere a função $\vec{G} = G_{\rho}\vec{u}_{\rho} + G_{\phi}\vec{u}_{\phi} + G_{z}\vec{u}_{z}$, na qual as componentes e as coordenadas dependem da variável t. Sua derivada nessa variável pode ser assim escrita:

$$\frac{d\vec{G}}{dt} = \frac{dG_{\rho}}{dt}\vec{u}_{\rho} + G_{\rho}\frac{d\vec{u}_{\rho}}{dt} + \frac{dG_{\phi}}{dt}\vec{u}_{\phi} + G_{\phi}\frac{d\vec{u}_{\phi}}{dt} + \frac{dG_z}{dt}\vec{u}_z$$
(1.30)

Usando as Equações (1.9) e (1.10), constata-se que:

$$\frac{d\vec{u}_{\rho}}{dt} = \frac{d\phi}{dt}\vec{u}_{\phi} \tag{1.31}$$

$$\frac{d\vec{u}_{\phi}}{dt} = -\frac{d\phi}{dt}\vec{u}_{\rho} \tag{1.32}$$

Substituindo na Equação (1.30), obtemos:

$$\frac{d\vec{G}}{dt} = \left(\frac{dG_{\rho}}{dt} - G_{\phi}\frac{d\phi}{dt}\right)\vec{u}_{\rho} + \left(\frac{dG_{\phi}}{dt} + G_{\rho}\frac{d\phi}{dt}\right)\vec{u}_{\phi} + \frac{dG_z}{dt}\vec{u}_z \tag{1.33}$$

Em coordenadas esféricas, para uma função $\vec{G} = G_r \vec{u}_r + G_\theta \vec{u}_\theta + G_\phi \vec{u}_\phi$, teremos:

$$\frac{d\vec{G}}{dt} = \frac{dG_r}{dt}\vec{u}_r + G_r\frac{d\vec{u}_r}{dt} + \frac{dG_\theta}{dt}\vec{u}_\theta + G_\theta\frac{d\vec{u}_\theta}{dt} + \frac{dG_\phi}{dt}\vec{u}_\phi + G_\phi\frac{d\vec{u}_\phi}{dt}$$
(1.34)

A partir das Equações (1.10) a (1.12), verifica-se que:

$$\frac{d\vec{u}_r}{dt} = \frac{d\theta}{dt}\vec{u}_\theta + sen\theta\frac{d\phi}{dt}\vec{u}_\phi \tag{1.35}$$

$$\frac{d\vec{u}_{\theta}}{dt} = -\frac{d\theta}{dt}\vec{u}_r + \cos\theta\frac{d\phi}{dt}\vec{u}_{\phi}$$
(1.36)

$$\frac{d\vec{u}_{\phi}}{dt} = -\left(sen\theta\vec{u}_r + \cos\theta\vec{u}_{\theta}\right)\frac{d\phi}{dt} \tag{1.37}$$

Com isso, a expressão que inclui as derivadas dos vetores unitários é a seguinte:

$$\frac{d\vec{G}}{dt} = \left(\frac{dG_r}{dt} - G_\theta \frac{d\theta}{dt} - G_\phi sen\theta \frac{d\phi}{dt}\right) \vec{u}_r
+ \left(\frac{dG_\theta}{dt} + G_r \frac{d\theta}{dt} - G_\phi cos\theta \frac{d\phi}{dt}\right) \vec{u}_\theta
+ \left(\frac{dG_\phi}{dt} + G_r sen\theta \frac{d\phi}{dt} + G_\theta cos\theta \frac{d\phi}{dt}\right) \vec{u}_\phi$$
(1.38)

Considere o exemplo do movimento de uma partícula descrito em coordenadas esféricas pelo vetor de posição como função do tempo $t, \vec{r}(t) = R(t)\vec{u}_r$. De acordo com a equação anterior, a velocidade dessa partícula é calculada como:

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dR(t)}{dt}\vec{u}_r + R(t)\frac{d\theta}{dt}\vec{u}_\theta + R(t)sen\theta\frac{d\phi}{dt}\vec{u}_\phi$$
(1.39)

em que as derivadas dos ângulos de direção são velocidades angulares que devem ser obtidas a partir das funções $\theta(t) \in \phi(t)$. Naturalmente, uma possibilidade é a

transformação para o sistema de coordenadas retangulares e a derivação segundo a Equação (1.28), uma vez que os vetores unitários nesse caso são constantes.

Entre as integrações de funções vetoriais, duas são de fundamental importância na teoria eletromagnética: a integral de linha e a integral de fluxo, mostradas a seguir.

$$\int_{C} \vec{F} \cdot d\vec{L} \tag{1.40}$$

$$\int_{S} \vec{F} \cdot d\vec{S} \tag{1.41}$$

A integral de linha é calculada ao longo de um percurso C entre duas posiçõeslimite (se o percurso for fechado, a integral é denominada de circulação) e $d\vec{L}$ é um deslocamento diferencial tangencial a esse caminho. A integral de fluxo é calculada sobre a área S de uma superfície e $d\vec{S}$ é um elemento diferencial de área normal a essa superfície.

A Figura 1.2 ilustra dois exemplos de integrações. No caso (a), a função \vec{E} descrita em coordenadas esféricas deve ser integrada ao longo do percurso (1) indicado na figura. A primeira parte do percurso é o trecho radial com ângulo θ_1 e deslocamentos $d\vec{L} = dr\vec{u}_r$. A segunda parte é um trecho circular com raio r_2 e deslocamentos $d\vec{L} = r_2 d\theta \vec{u}_{\theta}$. Nesse caso, a integral de linha não depende do percurso de integração. Se os demais percursos indicados na Figura 1.2a fossem utilizados, o resultado seria idêntico ao obtido anteriormente. Se a integração fosse feita em qualquer percurso fechado, ou seja, se as posições inicial e final fossem idênticas, o resultado seria nulo. Essas são importantes propriedades dos chamados campos conservativos.

Na Figura 1.2b, a função \vec{B} descrita em coordenadas cilíndricas é integrada na área indicada, que corresponde a uma parte do plano coordenado ρz com ângulo

 $\phi_0.$ O elemento de área nessa superfície é, portanto, $d\vec{S}=d\rho dz \vec{u}_\phi.$

$$\begin{split} &\int_{C} \vec{E} \cdot d\vec{L} = \int_{r_1}^{r_2} \frac{k}{r^3} \left(2\cos\theta_1 \vec{u}_r + \sin\theta_1 \vec{u}_\theta \right) \cdot dr \, \vec{u}_r \\ &+ \int_{\theta_1}^{\theta_2} \frac{k}{r_2^3} \left(2\cos\theta \vec{u}_r + \sin\theta \vec{u}_\theta \right) \cdot r_2 d\theta \, \vec{u}_\theta \\ &= 2k\cos\theta_1 \int_{r_1}^{r_2} \frac{dr}{r^3} + \frac{k}{r_2^2} \int_{\theta_1}^{\theta_2} \sin\theta d\theta \\ &= k \left(\frac{\cos\theta_1}{r_1^2} - \frac{\cos\theta_2}{r_2^2} \right) \\ &\int_{S} \vec{B} \cdot d\vec{S} = \int_{0}^{b} \int_{0}^{a} \frac{k\rho}{\sqrt{\rho^2 + z^2}} \vec{u}_\phi \cdot d\rho dz \vec{u}_\phi \\ &= k \int_{0}^{b} \left[\int_{0}^{a} \frac{\rho d\rho}{\sqrt{\rho^2 + z^2}} \right] dz \tag{1.43} \\ &= k \int_{0}^{b} \left[\sqrt{a^2 + z^2} - z \right] dz \\ &= \frac{k}{2} \left[b\sqrt{a^2 + b^2} + a^2 Ln \left(b + \sqrt{a^2 + b^2} \right) - b^2 - a^2 Ln \left(a \right) \right] \end{split}$$

1.3 Questões

1.1) Mostre que as matrizes de transformação entre os sistemas de coordenadas cilíndricas e esféricas são dadas pelas seguintes expressões:

$$\begin{bmatrix} \vec{u}_r \\ \vec{u}_\theta \\ \vec{u}_\phi \end{bmatrix} = \begin{pmatrix} sen\theta & 0 & cos\theta \\ cos\theta & 0 & -sen\theta \\ 0 & 1 & 0 \end{pmatrix} \begin{bmatrix} \vec{u}_\rho \\ \vec{u}_\phi \\ \vec{u}_z \end{bmatrix}$$
(1.44)

$$\begin{bmatrix} \vec{u}_{\rho} \\ \vec{u}_{\phi} \\ \vec{u}_{z} \end{bmatrix} = \begin{pmatrix} sen\theta & cos\theta & 0 \\ 0 & 0 & 1 \\ cos\theta & -sen\theta & 0 \end{pmatrix} \begin{bmatrix} \vec{u}_{r} \\ \vec{u}_{\theta} \\ \vec{u}_{\phi} \end{bmatrix}$$
(1.45)

Figura 1.2: Ilustrações para os exemplos de cálculo de integrais de linha e de fluxo. (a) Integral de linha do campo \vec{E} entre as posições $(r_1, \theta_1) \in (r_2, \theta_2)$. (1), (2) e (3) são possíveis caminhos de integração. (b) Integral de fluxo do campo \vec{B} no plano azimutal. Nas duas equações k é uma constante.

1.2) Escreva a função a seguir nos sistemas de coordenadas cilíndricas e esféricas.

$$\vec{F} = \frac{x^2 y}{\sqrt{x^2 + y^2}} \vec{u}_x + \frac{x y^2}{\sqrt{x^2 + y^2}} \vec{u}_y \tag{1.46}$$

1.3) Escreva a função a seguir nos sistemas de coordenadas retangulares e esféricas.

$$\vec{G} = \frac{sen\phi}{\rho}\vec{u}_{\rho} + \frac{cos\phi}{\rho}\vec{u}_{\phi} + z\vec{u}_z \tag{1.47}$$

1.4) Escreva a função a seguir nos sistemas de coordenadas retangulares e cilíndricas.

$$\vec{G} = r^{2} [sen^{3}\theta(cos^{3}\phi + sen\phi) + cos\theta]\vec{u}_{r} + r^{2} [sen^{2}\theta \cos\theta(cos^{3}\phi + sen\phi) - sen\theta]\vec{u}_{\theta} + r^{2} sen^{2}\theta \cos\phi(1 - cos\phi sen\phi)\vec{u}_{\phi}$$
(1.48)

1.5) Mostre que as Equações (1.31), (1.32), (1.35), (1.36) e (1.37) são corretas.

1.6) Considere uma partícula em movimento espiral no plano azimutal com velocidade radial $d\rho/dt = p = cte$ e velocidade angular $d\phi/dt = \omega = cte$ e outra partícula em movimento acelerado no eixo z com aceleração a. Se ambas partem do repouso na origem em t = 0 escreva a equação da posição da segunda partícula em relação à primeira como função do tempo e calcule a velocidade relativa nos sistemas de coordenadas retangulares e cilíndricas.

1.7) Considere uma esfera de raio R com centro coincidindo com a origem do sistema de coordenadas e girando em torno do eixo x com velocidade angular ω . Calcule a velocidade linear em coordenadas esféricas de um ponto na superfície da esfera.

1.8) Calcule o fluxo do campo vetorial descrito na equação a seguir em uma área circular perpendicular e concêntrica com o eixo z na posição z = a e com raio R.

$$\vec{F} = \frac{2\cos\theta \vec{u}_r + \sin\theta \vec{u}_\theta}{r^3} \tag{1.49}$$

1.9) Calcule a circulação do campo descrito pela equação a seguir em um caminho circular com raio R concêntrico com o eixo z.

$$\vec{F} = \frac{x^2 z (y \vec{u}_x - x \vec{u}_y) + z^2 \vec{u}_z}{(x^2 + y^2)^2}$$
(1.50)

1.10) Verifique se a integral de linha do campo vetorial descrito na equação a seguir é independente do caminho em dois percursos entre as posições (x_1, y_1) e (x_2, y_2) : caminho $1 - \det x_1$ para $x_2 \operatorname{com} y = y_1$ e de y_1 para $y_2 \operatorname{com} x = x_2$; caminho $2 - \operatorname{linha}$ reta que liga (x_1, y_1) a (x_2, y_2) .

$$\vec{E} = \frac{k}{r^2} \vec{u}_r \tag{1.51}$$

Capítulo 2

Força entre cargas elétricas

2.1 Lei de Coulomb

A lei de força entre duas partículas portadoras de carga elétrica em repouso resultou dos experimentos realizados pelo francês Charles-Augustin de Coulomb no século XVIII. Denominado lei de Coulomb, esse modelo matemático descreve a força elétrica entre partículas puntiformes, que, por definição, são partículas com volume infinitesimal, ocupando assim apenas um ponto no espaço.

Sejam q_1 e q_2 as cargas elétricas das partículas e d a distância entre elas no espaço. A força sobre a partícula 2 pode ser escrita na seguinte forma:

$$\vec{F}_e = k_e \frac{q_1 q_2}{d^2} \vec{u}_{21} \tag{2.1}$$

em que \vec{u}_{21} é o vetor unitário orientado na direção e no sentido da posição da partícula 2 em relação à partícula 1.

No sistema internacional de unidades, a carga elétrica é medida em *coulomb* (C). A carga elementar, isto é, a menor carga conhecida, é $1,602 \times 10^{-19}$ C, que corresponde à carga de um elétron ou de um próton. A diferença na carga elétrica entre prótons e elétrons é o sinal: positivo para prótons e negativo para elétrons.

 k_e é a constante eletrostática, que no vácuo vale aproximadamente 9×10^9 Nm²/C², em que N e m são os símbolos para as conhecidas unidades de força (*newton*) e distância (*metro*). A relação $k_e = 1/4\pi\epsilon_0$ define uma constante fundamental da eletrostática, denominada permissividade elétrica do vácuo, que apresenta o valor $\epsilon_0 = 8,85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$.

Segundo a Equação (2.1), duas cargas com mesmo sinal se repelem e duas cargas com sinais contrários se atraem. Com base nesse modelo, podemos estimar que dois elétrons no vácuo separados pela distância de um nanômetro se repelem

Figura 2.1: Ilustrações para cálculo de força elétrica: (a) duas cargas puntiformes; (b) dois fios retilíneos ligados a uma bateria.

com força de 2,31 × 10⁻¹⁰ N. Se as posições das partículas são descritas pelos vetores $\vec{r_1} \in \vec{r_2}$, como mostra a Figura 2.1a, em um dado sistema de coordenadas, a Equação (2.1) pode ser reescrita na seguinte forma:

$$\vec{F}_e = k_e \, q_1 q_2 \frac{\vec{r}_2 - \vec{r}_1}{\left|\vec{r}_2 - \vec{r}_1\right|^3} \tag{2.2}$$

Usando coordenadas retangulares, essa equação torna-se:

$$\vec{F}_e = k_e q_1 q_2 \frac{(x_2 - x_1) \vec{u}_x + (y_2 - y_1) \vec{u}_y + (z_2 - z_1) \vec{u}_z}{\left[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 \right]^{3/2}}$$
(2.3)

Se desejássemos obter essa equação em outro sistema de coordenadas, poderíamos usar as matrizes de transformação mostradas no Capítulo 1.

2.2 Cálculo da força elétrica

Embora a Equação (2.2) seja útil conceitualmente, seu uso é restrito a partículas muito pequenas e bem separadas no espaço, como elétrons em um átomo. Essa equação não pode ser utilizada, por exemplo, em condutores metálicos, pois o número de partículas carregadas é extremamente elevado.

Considere dois fios metálicos muito finos que foram carregados eletricamente no contato com uma fonte de potencial elétrico, como uma bateria eletroquímica (veja a Figura 2.1b para os detalhes geométricos). O metal possui estados eletrônicos que podem doar ou receber elétrons com grande facilidade. O fio ligado ao polo positivo perde elétrons para a bateria e o fio ligado ao polo negativo ganha elétrons da bateria. Pode-se estimar a quantidade de elétrons em excesso usando métodos que serão estudados em outros capítulos.

Por enquanto, considere que dois fios longos, retilíneos e paralelos, com diâmetro de 1 mm e separados por 1 cm, são ligados aos polos opostos de uma bateria de 12 V. Um *volt* (V) corresponde à energia de 1 *joule* (J) que uma carga de 1 C adquire quando submetida a essa diferença de potencial elétrico. Mais tarde trataremos da definição e do cálculo de potencial elétrico.

Nas condições da Figura 2.1b, o fio negativamente carregado acumula elétrons em excesso que se distribuem com uma densidade de aproximadamente um milhão de elétrons em cada milímetro de seu comprimento. O fio ligado ao polo positivo também acumula essa carga, mas, nesse caso, é uma carga positiva dos íons de átomos metálicos que cederam elétrons para a bateria. Com essa quantidade enorme de partículas carregadas, é impossível usar a lei de Coulomb na forma da Equação (2.2), mesmo porque essa equação refere-se a apenas duas partículas. Podemos, contudo, generalizar a lei de Coulomb para distribuições de carga que possam ser descritas por densidades espaciais.

No caso em questão, uma vez que os fios são muito finos, podemos descrever a distribuição de carga por uma densidade linear, ou seja, a quantidade de carga elétrica por unidade de comprimento. Fazendo isso, podemos substituir as cargas puntiformes $q_1 e q_2$ por cargas infinitesimais $dq_1 = \rho_{L1}dL_1 e dq_2 = \rho_{L2}dL_2$ e obter a seguinte expressão matemática da força elétrica:

$$\vec{F}_e = k_e \int_{L_1} \int_{L_2} \rho_{L1} \rho_{L2} \frac{(\vec{r}_2 - \vec{r}_1)}{|\vec{r}_2 - \vec{r}_1|^3} dL_1 dL_2$$
(2.4)

A fim de facilitar o processo de cálculo, podemos separar as integrais na equação anterior da seguinte forma:

$$\vec{E}_{21}\left(\vec{r}_{2}\right) = k_{e} \int_{L_{1}} \rho_{L1} \frac{\left(\vec{r}_{2} - \vec{r}_{1}\right)}{\left|\vec{r}_{2} - \vec{r}_{1}\right|^{3}} dL_{1}$$

$$(2.5)$$

$$\vec{F}_e = \int_{L_2} \rho_{L2} \, \vec{E}_{21} \, (\vec{r}_2) \, dL_2 \tag{2.6}$$

O campo vetorial \vec{E}_{21} é denominado campo elétrico e será discutido em detalhes mais tarde. Esse campo é gerado pela carga no condutor L_1 , mas calculado sobre as posições do condutor L_2 . Na Figura 2.1b, os fios estão orientados na direção z e separados na direção y. Então, $dL_1 = dz_1$, $dL_2 = dz_2$ e $\vec{r} = h\vec{u}_y + (z_2 - z_1)\vec{u}_z$. Assim, temos:

$$\vec{E}_{21}(z_2) = k_e \,\rho_{L1} \int_0^l \frac{h \,\vec{u}_y + (z_2 - z_1) \,\vec{u}_z}{\left[h^2 + (z_2 - z_1)^2\right]^{3/2}} dz_1 \tag{2.7}$$

A integral na direção z é simples de resolver:

$$E_{21z}(z_2) = k_e \rho_{L1} \int_0^l \frac{(z_2 - z_1) dz_1}{\left[h^2 + (z_2 - z_1)^2\right]^{3/2}}$$

= $k_e \rho_{L1} \left[\frac{1}{\sqrt{h^2 + (z_2 - z_1)^2}}\right]_0^l$ (2.8)
= $k_e \rho_{L1} \left[\frac{1}{\sqrt{h^2 + (z_2 - l)^2}} - \frac{1}{\sqrt{h^2 + z_2^2}}\right]$

Na direção y, podemos usar a seguinte função primitiva:

$$\int \frac{dx}{\left[x^2 + a^2\right]^{3/2}} = \frac{x}{a^2 \sqrt{x^2 + a^2}} \tag{2.9}$$

Assim, obtemos para o campo elétrico na direção y:

$$E_{21y}(z_2) = k_e h \rho_{L1} \int_0^l \frac{dz_1}{\left[h^2 + (z_2 - z_1)^2\right]^{3/2}}$$

$$= -k_e h \rho_{L1} \left[\frac{(z_2 - z_1)}{h^2 \sqrt{(z_2 - z_1)^2 + h^2}}\right]_0^l$$

$$= \frac{k_e \rho_{L1}}{h} \left[\frac{z_2}{\sqrt{z_2^2 + h^2}} - \frac{(z_2 - l)}{\sqrt{(z_2 - l)^2 + h^2}}\right]$$

(2.10)

A força no condutor L_2 é obtida a partir da Equação (2.6).

$$F_{ez} = \int_{L_2} \rho_{L2} E_{21z} dL_2$$

$$= k_e \rho_{L2} \rho_{L1} \int_0^l \left[\frac{1}{\sqrt{h^2 + (z_2 - l)^2}} - \frac{1}{\sqrt{h^2 + z_2^2}} \right] dz_2 = 0$$
(2.11)

$$F_{ey} = \int_{L_2} \rho_{L2} E_{21y} dz_2$$

= $\frac{k_e \rho_{L1} \rho_{L2}}{h} \int_0^l \left[\frac{z_2}{\sqrt{z_2^2 + h^2}} - \frac{(z_2 - l)}{\sqrt{(z_2 - l)^2 + h^2}} \right] dz_2$ (2.12)
= $\frac{k_e \rho_{L1} \rho_{L2}}{h} \left[\sqrt{z_2^2 + h^2} - \sqrt{(z_2 - l)^2 + h^2} \right]_0^l$
= $\frac{2k_e \rho_{L1} \rho_{L2}}{h} \left(\sqrt{l^2 + h^2} - h \right)$

A integral em F_{ez} se anula pelo fato de o integrando ser uma função antissimétrica em relação ao meio do fio. De acordo com a estimativa citada anteriormente, para h = 0,01 m, diâmetro dos fios de 0,001 m e uma diferença de potencial elétrico de 12 V, a densidade de carga nos fios é de aproximadamente $1,45 \times 10^{-10}$ C/m. Evidentemente, $\rho_{L1} = -\rho_{L2}$. Para um comprimento l =0,1 m, obtém-se com a equação anterior a força $F_{ey} = -3,42 \times 10^{-9}$ N. O sinal negativo indica que a força é de atração.

A Figura 2.2 mostra duas esferas metálicas também carregadas com cargas de sinais contrários pelo contato com uma bateria. Inicialmente vamos assumir que as esferas estão bem afastadas (d >> R), de modo que a força elétrica não distorce apreciavelmente as distribuições de carga. Isso significa que podemos considerar que a carga elétrica está uniformemente distribuída nas superfícies das esferas. Uma vez que o excesso de carga se localiza em estados eletrônicos nas bandas de condução dos metais, esses elétrons possuem alta mobilidade e podem se deslocar facilmente para qualquer lugar na estrutura cristalina.

Devido à mútua repulsão, os elétrons na esfera negativamente carregada se concentram na superfície, mantendo a neutralidade elétrica no interior da esfera. Na esfera positivamente carregada, elétrons são retirados pelo polo positivo da bateria e os elétrons restantes se distribuem internamente para manter a neutralidade elétrica no volume. Isso significa que sobra a carga positiva dos íons metálicos na superfície dessa esfera. Então, as distribuições de carga podem ser descritas por densidades superficiais.

Considerando as áreas infinitesimais nas superfícies das esferas $dS_1 e dS_2$, as cargas acumuladas nesses elementos de área são: $dq_1 = \rho_{S1}dS_1 e dq_2 = \rho_{S2}dS_2$. De acordo com a Equação (2.2), a força entre as esferas pode ser escrita na seguinte forma:

$$\vec{F}_e = k_e \int_{S_1} \int_{S_2} \rho_{S1} \rho_{S2} \frac{(\vec{r}_2 - \vec{r}_1)}{|\vec{r}_2 - \vec{r}_1|^3} dS_1 dS_2$$
(2.13)

Figura 2.2: Ilustração para cálculo de força elétrica entre duas esferas metálicas eletricamente carregadas: (a) esquema para integração na esfera em z = 0; (b) esquema para integração na esfera em z = d.

que pode ser reescrita usando-se o campo elétrico que a carga na esfera S_1 produz sobre a esfera S_2 .

$$\vec{E}_{21}\left(\vec{r}_{2}\right) = k_{e} \int_{S_{1}} \rho_{S1} \frac{\left(\vec{r}_{2} - \vec{r}_{1}\right)}{\left|\vec{r}_{2} - \vec{r}_{1}\right|^{3}} dS_{1}$$

$$(2.14)$$

$$\vec{F}_e = \int_{S_2} \rho_{S2} \vec{E}_{21} \left(\vec{r}_2 \right) dS_2 \tag{2.15}$$

Portanto, inicialmente calculamos o campo elétrico sobre a esfera S_2 . De acordo com o esquema da Figura 2.2a, se nos referirmos ao ponto p, temos o seguinte vetor de posição:

$$\vec{r}_2 - \vec{r}_1 = -R \operatorname{sen}\theta \cos\phi \,\vec{u}_x - R \operatorname{sen}\theta \operatorname{sen}\phi \,\vec{u}_y + (r - R \cos\theta) \,\vec{u}_z |\vec{r}_2 - \vec{r}_1| = \sqrt{R^2 + r^2 - 2rR\cos\theta}$$
(2.16)

E o campo elétrico é calculado da seguinte forma:

$$\vec{E}_{21}(r) = k_e \rho_{S1}$$

$$\int_{0}^{2\pi} \int_{0}^{\pi} \frac{-Rsen\theta cos\phi \vec{u}_x - Rsen\theta sen\phi \vec{u}_y + (r - Rcos\theta) \vec{u}_z}{\left[R^2 + r^2 - 2rRcos\theta\right]^{3/2}} R^2 sen\theta d\theta d\phi$$
(2.17)

As integrais nas direções x e y se anulam devido às funções $cos\phi$ e $sen\phi$ no numerador. Na direção z, o resultado é obtido da seguinte forma:

$$E_{21z}(r) = k_e \rho_{S1} \int_{0}^{2\pi} \int_{0}^{\pi} \frac{(r - R\cos\theta)}{[R^2 + r^2 - 2rR\cos\theta]^{3/2}} R^2 \sin\theta d\theta d\phi$$

$$= -2\pi k_e \rho_{S1} R^2 \frac{d}{dr} \left[\int_{0}^{\pi} \frac{\sin\theta d\theta}{\sqrt{R^2 + r^2 - 2rR\cos\theta}} \right]$$

$$= -2\pi k_e \rho_{S1} R \frac{d}{dr} \left\{ \frac{1}{r} \left[\sqrt{R^2 + r^2 - 2rR\cos\theta} \right]_{o}^{\pi} \right\}$$

$$= -2\pi k_e \rho_{S1} R \frac{d}{dr} \left\{ \frac{1}{r} \left[(r + R) - (r - R) \right] \right\}$$

$$= -4\pi k_e \rho_{S1} R^2 \frac{d}{dr} \left(\frac{1}{r} \right) = k_e \rho_{S1} \frac{4\pi R^2}{r^2}$$

(2.18)

A direção do campo no ponto p é definida por \vec{u}_z , mas o resultado anterior é válido para qualquer ponto do espaço, devido à forma esfericamente simétrica da

distribuição de carga. Para uma posição genérica na esfera S_2 , devemos usar \vec{u}_r . Em seguida, devemos substituir o resultado anterior na Equação (2.15) e integrar para obter a força. Ao fazer isso, podemos substituir \vec{u}_r pelos vetores unitários retangulares segundo a Equação (1.3).

$$\begin{split} \vec{F}_e &= k_e \rho_{S1} \rho_{S2} \int\limits_{S_2} \frac{4\pi R^2}{r^2} \vec{u}_r dS_2 \\ &= k_e \rho_{S1} \rho_{S2} 4\pi R^2 \int\limits_{0}^{2\pi} \int\limits_{0}^{\pi} \frac{sen\theta cos\phi \vec{u}_x + sen\theta sen\phi \vec{u}_y + cos\theta \vec{u}_z}{r^2} R^2 sen\theta' d\theta' d\phi' \quad (2.19) \\ &= k_e \rho_{S1} \rho_{S2} 8\pi^2 R^4 \vec{u}_z \int\limits_{0}^{\pi} \frac{cos\theta}{r^2} sen\theta' d\theta' \end{split}$$

As integrais na variável ϕ' se anulam devido às funções $\cos\phi$ e $\sin\phi$ e pelo fato de $\phi' = \phi$. Agora, usando a trigonometria e a lei dos cossenos, podemos substituir o termo $\cos\theta/r$ segundo o desenvolvimento a seguir.

$$\cos\theta = \frac{d - r'\cos\theta'}{r}$$

$$r = \sqrt{d^2 + r'^2 - 2dr'\cos\theta'}$$

$$\frac{\cos\theta}{r^2} = \frac{d - r'\cos\theta'}{\left[d^2 + r'^2 - 2dr'\cos\theta'\right]^{3/2}}$$
(2.20)

Assim, a integral da força torna-se:

$$\vec{F}_{e} = k_{e}\rho_{S1}\rho_{S2}8\pi^{2}R^{4}\vec{u}_{z}\int_{0}^{\pi} \frac{d - r'\cos\theta'}{\left[d^{2} + r'^{2} - 2dr'\cos\theta'\right]^{3/2}}sen\theta'd\theta'$$
(2.21)

Uma integral análoga foi resolvida na Equação (2.18). Portanto, usando o mesmo procedimento, verifica-se que a integral na equação anterior resulta no valor $2/d^2$. Assim, a força entre as esferas é obtida da seguinte forma:

$$\vec{F}_{e} = \frac{k_{e}\rho_{S1}\rho_{S2}16\pi^{2}R^{4}}{d^{2}}\vec{u}_{z}$$

$$= k_{e}\frac{(\rho_{S1}4\pi R^{2})(\rho_{S2}4\pi R^{2})}{d^{2}}\vec{u}_{z}$$

$$= k_{e}\frac{q_{1}q_{2}}{d^{2}}\vec{u}_{z}$$
(2.22)

em que q_1 e q_2 são as cargas totais nas esferas.

A forma final da força é idêntica à lei de Coulomb, como se fossem cargas puntiformes localizadas exatamente nos centros geométricos das esferas. Isso se deve à hipótese simplificadora segundo a qual as cargas se distribuem uniformemente nas superfícies, algo que, de fato, não ocorre. Contudo, pode ser uma aproximação aceitável se a distância entre as esferas for muito maior que seus diâmetros. O cálculo da carga nas esferas nesse caso será avaliado mais tarde, mas podemos antecipar o resultado. Considere que o diâmetro das esferas é 0,01 m e que elas estão afastadas pela distância de 0,1 m centro a centro. Se uma bateria de 12 V é conectada entre as esferas, elas se carregarão com carga de $3, 33 \times 10^{-12}$ C e a força de atração será de 1×10^{-11} N.

2.3 Questões

2.1) Calcule a força elétrica sobre uma pequena partícula carregada com carga q_1 nas situações descritas a seguir. Em cada caso, calcule também as forças máxima e mínima e as posições onde ocorrem.

a) A partícula situa-se sobre o eixo de simetria de um disco metálico muito fino com raio R na posição z em relação ao seu centro. O disco está carregado uniformemente com carga q_2 .

b) A partícula situa-se sobre o eixo de simetria de uma espira metálica com raio R na posição z em relação ao seu centro. A espira está carregada uniformemente com carga q_2 .

c) A partícula situa-se à distância radial ρ de um fio retilíneo muito longo com raio *a* uniformemente carregado com densidade de carga ρ_L .

d) A partícula situa-se em uma posição intermediária entre uma esfera de raio R e um plano infinito, ambos carregados com densidade de carga ρ_S . A distância entre o centro da esfera e o plano é d >> R. Considere a distância da partícula ao plano dada pela coordenada z.

2.2) Explique como calcular a força elétrica entre duas placas metálicas idênticas dispostas paralelamente e conectadas aos terminais de uma bateria assumindo que a densidade de carga é uniforme na superfície das placas.

2.3) Duas espiras de fio metálico de raio R estão dispostas concentricamente em relação ao eixo z do sistema de coordenadas e separadas pela distância d = R. Se elas se encontram ligadas aos terminais de uma bateria que estabelece cargas de sinais contrários com densidade linear ρ_L , obtenha a expressão integral da força sobre as espiras.

2.4) Em relação ao sistema descrito no item anterior, se uma carga puntiforme q é colocada em uma posição sobre o eixo de simetria com distância z do centro

geométrico, calcule a força sobre essa carga.

2.5) Explique como calcular a força entre esferas metálicas eletricamente carregadas destacando a importância da distância entre elas em relação à uniformidade da distribuição de carga e à intensidade da força.

2.6) Explique como ocorre o processo de eletrização de objetos metálicos ligados a fontes de potencial elétrico e por que a carga elétrica em excesso se situa na superfície desses objetos.

2.7) Estime a força elétrica entre duas esferas de aço idênticas com diâmetros de 1 cm, distantes 10 cm centro a centro e carregadas com $3, 2 \times 10^{-6} \text{ C/m}^2$.

Capítulo 3

Força entre correntes elétricas

3.1 Força magnética

No capítulo anterior descrevemos e calculamos a força entre cargas elétricas estacionárias no sistema de referência. Agora consideraremos as forças entre cargas elétricas em movimento. Embora possamos avaliar as forças envolvidas no movimento de cargas individuais, esta não é a situação mais comum na engenharia. Interessam-nos especialmente as forças entre condutores transportando correntes elétricas, e estas são constituídas por grandes quantidades de partículas em movimento.

A força entre correntes elétricas é denominada força magnética e foi estudada pelo francês André-Marie Ampère e pelo dinamarquês Hans Cristhian Oersted no início do século XIX. Pode ser descrita, baseando-se na Figura 3.1, segundo a fórmula a seguir, aplicada a condutores filamentares:

$$\vec{F}_m = k_m \int_{L_2} \int_{L_1} i_2 d\vec{L}_2 \times \left(\frac{i_1 d\vec{L}_1 \times \vec{u}_{21}}{r^2}\right)$$
(3.1)

em que i_1 e i_2 são as correntes elétricas nos condutores, $d\vec{L}_1$ e $d\vec{L}_2$ são deslocamentos infinitesimais tangenciais aos condutores, o produto $id\vec{L}$ é denominado elemento de corrente, \vec{u}_{21} é o vetor unitário relativo ao vetor de posição do elemento $i_2d\vec{L}_2$ em relação ao elemento $i_1d\vec{L}_1$, r é o módulo desse vetor de posição e k_m é a constante magnética, cujo valor no vácuo é 1×10^{-7} N/A².

A relação $k_m = \mu_o/4\pi$ define uma importante constante da física, denominada permeabilidade magnética do vácuo, cujo valor é $\mu_o = 4\pi \times 10^{-7} \text{ N/A}^2$. O símbolo A refere-se a *ampère*, a unidade de corrente elétrica, que corresponde à carga de 1 C atravessando a seção transversal de um condutor em 1 *segundo* (s). A Equação

Figura 3.1: Ilustração para o cálculo da força magnética entre correntes elétricas.

(3.1) pode ser dividida em duas partes para facilitar o cálculo:

$$\vec{B}_{21}(\vec{r}_2) = k_m \int_{L_1} \frac{i_1 d\vec{L}_1 \times (\vec{r}_2 - \vec{r}_1)}{|\vec{r}_2 - \vec{r}_1|^3}$$
(3.2)

$$\vec{F}_m = \int_{L_2} i_2 d\vec{L}_2 \times \vec{B}_{21} \left(\vec{r}_2 \right)$$
(3.3)

O campo vetorial \vec{B}_{21} é denominado indução magnética e será discutido em detalhes mais tarde. Esse campo é gerado pela corrente no condutor L_1 , mas calculado sobre as posições do condutor L_2 . O vetor unitário foi escrito na forma da diferença entre os vetores de posição nos dois fios.

3.2 Cálculo da força magnética

Consideraremos a seguir alguns exemplos de cálculo da força magnética. Na Figura 2.1b, dois fios retilíneos e paralelos estão ligadas aos polos de uma bateria. Já calculamos a força elétrica entre os fios. Agora, considere que seja ligada uma resistência elétrica de valor R na outra extremidade do par de fios. Com isso, passa a circular a corrente elétrica de intensidade $i = V_o/R$. Essa estrutura é denominada linha de transmissão de fios paralelos e serve para o transporte de energia ou sinais entre um gerador e uma carga.

Usando os mesmos vetores de posição já utilizados no caso do cálculo da força elétrica, a indução magnética sobre L_2 pode ser escrita na seguinte forma:

$$\vec{B}_{21}(z_2) = k_m \int_0^l i dz_1 \vec{u}_z \times \frac{h \vec{u}_y + (z_2 - z_1) \vec{u}_z}{\left[h^2 + (z_2 - z_1)^2\right]^{3/2}}$$

$$= -k_m i h \vec{u}_x \int_0^l \frac{dz_1}{\left[h^2 + (z_2 - z_1)^2\right]^{3/2}}$$
(3.4)

em que usamos os resultados $\vec{u}_z \times \vec{u}_y = -\vec{u}_x$ e $\vec{u}_z \times \vec{u}_z = 0$. Utilizando a Equação (2.9) para resolver a integral, obtemos:

$$\vec{B}_{21}(z_2) = k_m i h \vec{u}_x \left[\frac{z_2 - z_1}{h^2 \sqrt{h^2 + (z_2 - z_1)^2}} \right]_0^l$$

$$= \frac{k_m i}{h} \vec{u}_x \left[\frac{z_2 - l}{\sqrt{h^2 + (z_2 - l)^2}} - \frac{z_2}{\sqrt{h^2 + z_2^2}} \right]$$
(3.5)

A força magnética sobre esse fio é obtida com a solução da Equação (3.3). Observe que a corrente elétrica nesse caso é -i.

$$\vec{F}_{m} = \int_{0}^{l} -idz_{2}\vec{u}_{z} \times \frac{k_{m}i}{h}\vec{u}_{x} \left[\frac{z_{2}-l}{\sqrt{h^{2}+(z_{2}-l)^{2}}} - \frac{z_{2}}{\sqrt{h^{2}+z_{2}^{2}}} \right]$$

$$= -\frac{k_{m}i^{2}}{h}\vec{u}_{y} \left[\int_{0}^{l} \frac{(z_{2}-l)dz_{2}}{\sqrt{h^{2}+(z_{2}-l)^{2}}} - \int_{0}^{l} \frac{z_{2}dz_{2}}{\sqrt{h^{2}+z_{2}^{2}}} \right]$$

$$= -\frac{k_{m}i^{2}}{h}\vec{u}_{y} \left[\sqrt{h^{2}+(z_{2}-l)^{2}} - \sqrt{h^{2}+z_{2}^{2}} \right]_{0}^{l}$$

$$= \frac{2k_{m}i^{2}}{h} \left(\sqrt{h^{2}+l^{2}} - h \right)\vec{u}_{y}$$
(3.6)

Como exemplo, considere que a tensão de 12 V da bateria é aplicada sobre uma resistência de 100 Ω resultando em uma corrente de 0,12 A. Para as mesmas dimensões usadas no exemplo de cálculo da força elétrica (h = 0,01 m e l = 0,1m), a força magnética é $F_{my} = 2,61 \times 10^{-8}$ N. A força magnética, neste caso, é de repulsão porque as correntes elétricas estão circulando em sentidos contrários.

Observe que a força elétrica depende da carga elétrica nos fios, que por sua vez é determinada pela intensidade da diferença de potencial aplicada. A força

magnética, por outro lado, depende da intensidade da corrente elétrica, que é determinada pela diferença de potencial e pela resistência elétrica do circuito. Assim, é possível obter força magnética muito maior que força elétrica.

Figura 3.2: Ilustração para cálculo da força magnética entre espiras.

A Figura 3.2 mostra duas espiras circulares concêntricas de fio condutor percorridas por correntes elétricas. Inicialmente calcularemos a indução magnética da espira C_1 em uma posição qualquer do espaço. Para isso, verificamos que $d\vec{L}_1 = Rd\phi_1\vec{u}_{\phi 1}$ e, usando coordenadas cilíndricas para \vec{r}_1 , teremos:

$$\vec{B}_{1}(\vec{r}) = k_{m} \int_{C_{1}} \frac{i_{1}Rd\phi_{1}\vec{u}_{\phi1} \times (\vec{r} - \vec{r}_{1})}{|\vec{r} - \vec{r}_{1}|^{3}}$$

$$= k_{m}Ri_{1} \int_{0}^{2\pi} \frac{d\phi_{1}\vec{u}_{\phi1} \times [(x - R\cos\phi_{1})\vec{u}_{x} + (y - R\sin\phi_{1})\vec{u}_{y} + z\vec{u}_{z}]}{[(x - R\cos\phi_{1})^{2} + (y - R\sin\phi_{1})^{2} + z^{2}]^{3/2}}$$

$$= k_{m}Ri_{1}$$
(3.7)

$$\int_{0}^{2\pi} \frac{\left(x - R\cos\phi_{1}\right)\left(\vec{u}_{\phi1} \times \vec{u}_{x}\right) + \left(y - R\,sen\phi_{1}\right)\left(\vec{u}_{\phi1} \times \vec{u}_{y}\right) + z\left(\vec{u}_{\phi1} \times \vec{u}_{z}\right)}{\left[x^{2} + y^{2} + z^{2} + R^{2} - 2R\left(x\cos\phi_{1} + y\,sen\phi_{1}\right)\right]^{3/2}} d\phi_{1}$$

Usando as Equações (1.9) e (1.10), obtemos os seguintes resultados: $\vec{u}_{\phi 1} \times \vec{u}_x = -\cos\phi_1 \vec{u}_z$, $\vec{u}_{\phi 1} \times \vec{u}_y = -\sin\phi_1 \vec{u}_z$, $\vec{u}_{\phi 1} \times \vec{u}_z = \vec{u}_{\rho 1} = \cos\phi_1 \vec{u}_x + \sin\phi_1 \vec{u}_y$. Substituindo na equação anterior, resultam duas componentes da indução magnética da espira, uma na direção axial (B_z) e outra na direção radial (B_ρ) .

$$B_{z} = k_{m}Ri_{1} \int_{0}^{2\pi} \frac{(R - x\cos\phi_{1} - y\sin\phi_{1}) d\phi_{1}}{\left[x^{2} + y^{2} + z^{2} + R^{2} - 2R\left(x\cos\phi_{1} + y\sin\phi_{1}\right)\right]^{3/2}}$$
(3.8)

$$\vec{B}_{\rho} = k_m R i_1 z \int_{0}^{2\pi} \frac{(\cos\phi_1 \vec{u}_x + \sin\phi_1 \vec{u}_y) \, d\phi_1}{\left[x^2 + y^2 + z^2 + R^2 - 2R \left(x\cos\phi_1 + y\sin\phi_1\right)\right]^{3/2}} \tag{3.9}$$

Reescrevendo também a posição (x, y, z) no espaço em coordenadas cilíndricas, resulta:

$$B_{z} = k_{m}Ri_{1} \int_{0}^{2\pi} \frac{\left[R - \rho \cos\left(\phi - \phi_{1}\right)\right] d\phi_{1}}{\left[\rho^{2} + z^{2} + R^{2} - 2\rho R\cos\left(\phi - \phi_{1}\right)\right]^{3/2}}$$
(3.10)

$$\vec{B}_{\rho} = k_m R i_1 z \int_{0}^{2\pi} \frac{(\cos\phi_1 \vec{u}_x + \sin\phi_1 \vec{u}_y) \, d\phi_1}{\left[\rho^2 + z^2 + R^2 - 2\rho R \cos\left(\phi - \phi_1\right)\right]^{3/2}} \tag{3.11}$$

A projeção da indução magnética no plano azimutal está orientada na direção radial, mas foi representada como um vetor porque o integrando na Equação (3.11) está escrito na forma vetorial. Podemos obter uma forma equivalente na qual o integrando é descrito por uma função escalar fazendo a substituição de coordenadas $\phi_1 - \phi = \phi'$. Essa demonstração é sugerida como exercício ao leitor. O resultado é o seguinte:

$$B_{\rho} = k_m R i_1 z \int_{0}^{2\pi} \frac{\cos\phi' d\phi'}{\left[\rho^2 + z^2 + R^2 - 2\rho R \cos\phi'\right]^{3/2}}$$
(3.12)

As Equações (3.10) e (3.12) mostram que a indução magnética da espira circular não depende da coordenada azimutal. Esse é um resultado esperado, uma vez que a distribuição de corrente na espira também não depende dessa coordenada. Essas integrais não possuem solução analítica, a não ser sobre o eixo de simetria da espira, ou seja, quando $\rho = 0$. Em qualquer outra posição do espaço, as opções de solução são baseadas em aproximações analíticas ou cálculo computacional. Essas questões serão tratadas oportunamente.

Por ora, devemos concluir o cálculo de força magnética relativo à Figura 3.2. Para isso, devemos substituir a indução magnética calculada nas posições sobre a espira C_2 e realizar a integração conforme a Equação (3.3).

$$\vec{F}_{m} = \int_{0}^{2\pi} i_{2} R d\phi_{2} \vec{u}_{\phi 2} \times (B_{z} \vec{u}_{z} + B_{\rho} \vec{u}_{\rho}) = i_{2} R \int_{0}^{2\pi} d\phi_{2} \left[B_{z} \vec{u}_{\rho} - B_{\rho} \vec{u}_{z} \right]$$

$$= -i_{2} R \vec{u}_{z} \int_{0}^{2\pi} B_{\rho} d\phi_{2}$$
(3.13)

A integral de $B_z \vec{u}_{\rho}$ é nula porque B_z é uma função simétrica de ϕ_2 , enquanto \vec{u}_{ρ} é antissimétrico. Observe que para o cálculo da força na espira C_2 basta

conhecer o módulo da componente radial da indução magnética da espira C_1 . Substituindo essa componente segundo a Equação (3.12) na posição sobre a espira C_2 ($\rho = R, z = d$), obtemos:

$$\vec{F}_{m} = -i_{2}R\vec{u}_{z}\int_{0}^{2\pi}B_{\rho}d\phi_{2} = -k_{m}R^{2}i_{1}i_{2}d\vec{u}_{z}\int_{0}^{2\pi}\int_{0}^{2\pi}\frac{\cos\phi'd\phi'd\phi_{2}}{\left[d^{2}+2R^{2}\left(1-\cos\phi'\right)\right]^{3/2}}$$

$$= -2\pi k_{m}i_{1}i_{2}(R/d)^{2}\vec{u}_{z}\int_{0}^{2\pi}\frac{\cos\phi'd\phi'}{\left[1+2(R/d)^{2}\left(1-\cos\phi'\right)\right]^{3/2}}$$
(3.14)

Novamente obtemos uma integral não solúvel por métodos analíticos e, assim, devemos recorrer ao cálculo computacional. Se as correntes circulam no mesmo sentido, a força é de atração. Realizando a integração computacional, verifica-se que a força máxima ocorre quando R/d = 0,84 e que o valor numérico da última integral na Equação (3.14) é 1,162 nesse caso.

Uma aproximação analítica interessante é obtida quando $R \ll d$. Essa demonstração é sugerida como exercício. O resultado é o seguinte:

$$\vec{F}_m \approx -6\pi^2 k_m i_1 i_2 (R/d)^4 \vec{u}_z$$
 (3.15)

3.3 Questões

3.1) Obtenha a integral de força magnética nos seguintes sistemas de condutores que transportam correntes elétricas de mesma intensidade em sentidos opostos.

a) Duas lâminas finas paralelas de largur
awe comprimento l, sobrepostas com separação
 d.

b) Duas lâminas finas paralelas de largura w e comprimento l, coplanares com separação d.

c) Duas espiras de raios R_1 e R_2 concêntricas, separadas pela distância d.

3.2) Uma linha de transmissão formada por dois condutores metálicos cilíndricos, posicionados paralelamente, ambos com raio de 2 milímetros, comprimento de 10 metros e separados pela distância de 10 centímetros no ar, transporta corrente elétrica de intensidade 50 A. Calcule a força por unidade de comprimento que atua nos condutores.

3.3) Considere um fio retilíneo longo transportando corrente elétrica de intensidade i_1 e uma espira quadrada coplanar de aresta *a* localizada à distância *d* transportando corrente i_2 . Se duas arestas da espira são paralelas ao fio e as outras duas são perpendiculares, calcule a força magnética que atua na espira. 3.4) Repita a questão anterior para uma espira circular de raio R.

3.5) Obtenha o resultado aproximado descrito na Equação
 (3.15)a partir da Equação (3.14). A teoria eletromagnética é uma das que mais influenciaram o progresso tecnológico da humanidade nos últimos séculos. Seu estudo é uma etapa de fundamental importância na formação de profissionais de engenharia elétrica, telecomunicações, computação e áreas afins.

Este livro contém toda a informação básica da disciplina Análise de Sistemas Eletromagnéticos, incluindo os fundamentos das ferramentas matemáticas necessárias, os conceitos e as leis, os princípios físicos das propriedades eletromagnéticas da matéria, os métodos analíticos e computacionais mais utilizados na análise de sistemas eletromagnéticos e a teoria fundamental dos sistemas de geração e propagação de ondas eletromagnéticas.

É destinado a cursos de graduação e pós-graduação em Engenharia Elétrica, nos quais pode servir como referência principal ou complementar em disciplinas de teoria eletromagnética, propriedades eletromagnéticas da matéria, cálculo eletromagnético computacional e sistemas de radiofrequência.

Blucher

Clique aqui e:

VEJA NA LOJA

Análise de Sistemas Eletromagnéticos

Airton Ramos

ISBN: 9786555060058 Páginas: 728 Formato: 17 x 24 cm Ano de Publicação: 2020 Peso: 1.150 kg